Reaction participants Show >> << Hide
- Name help_outline a sphingoid base Identifier CHEBI:84410 Charge 1 Formula C3H9NO2R SMILEShelp_outline [NH3+][C@@H](CO)[C@H](O)[*] 2D coordinates Mol file for the small molecule Search links Involved in 139 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline octadecanoyl-CoA Identifier CHEBI:57394 Charge -4 Formula C39H66N7O17P3S InChIKeyhelp_outline SIARJEKBADXQJG-LFZQUHGESA-J SMILEShelp_outline CCCCCCCCCCCCCCCCCC(=O)SCCNC(=O)CCNC(=O)[C@H](O)C(C)(C)COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 62 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline an N-octadecanoyl-sphingoid base Identifier CHEBI:144711 Charge 0 Formula C21H42NO3R SMILEShelp_outline OC[C@@H]([C@@H](*)O)NC(=O)CCCCCCCCCCCCCCCCC 2D coordinates Mol file for the small molecule Search links Involved in 12 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CoA Identifier CHEBI:57287 (Beilstein: 11604429) help_outline Charge -4 Formula C21H32N7O16P3S InChIKeyhelp_outline RGJOEKWQDUBAIZ-IBOSZNHHSA-J SMILEShelp_outline CC(C)(COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12)[C@@H](O)C(=O)NCCC(=O)NCCS 2D coordinates Mol file for the small molecule Search links Involved in 1,511 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:61476 | RHEA:61477 | RHEA:61478 | RHEA:61479 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
MetaCyc help_outline |
Related reactions help_outline
Specific form(s) of this reaction
More general form(s) of this reaction
Publications
-
CerS1-Derived C18:0 Ceramide in Skeletal Muscle Promotes Obesity-Induced Insulin Resistance.
Turpin-Nolan S.M., Hammerschmidt P., Chen W., Jais A., Timper K., Awazawa M., Brodesser S., Bruening J.C.
Skeletal muscle accumulates ceramides in obesity, which contribute to the development of obesity-associated insulin resistance. However, it remained unclear which distinct ceramide species in this organ contributes to instatement of systemic insulin resistance. Here, ceramide profiling of high-fat ... >> More
Skeletal muscle accumulates ceramides in obesity, which contribute to the development of obesity-associated insulin resistance. However, it remained unclear which distinct ceramide species in this organ contributes to instatement of systemic insulin resistance. Here, ceramide profiling of high-fat diet (HFD)-fed animals revealed increased skeletal muscle C<sub>18:0</sub> ceramide content, concomitant with increased expression of ceramide synthase (CerS)1. Mice lacking CerS1, either globally or specifically in skeletal muscle (CerS1<sup>ΔSkM</sup>), exhibit reduced muscle C<sub>18:0</sub> ceramide content and significant improvements in systemic glucose homeostasis. CerS1<sup>ΔSkM</sup> mice exhibit improved insulin-stimulated suppression of hepatic glucose production, and lack of CerS1 in skeletal muscle improves systemic glucose homeostasis via increased release of Fgf21 from skeletal muscle. In contrast, muscle-specific deficiency of C<sub>16:0</sub> ceramide-producing CerS5 and CerS6 failed to protect mice from obesity-induced insulin resistance. Collectively, these results reveal the tissue-specific function of distinct ceramide species during the development of obesity-associated insulin resistance. << Less
-
Overexpression of ceramide synthase 1 increases C18-ceramide and leads to lethal autophagy in human glioma.
Wang Z., Wen L., Zhu F., Wang Y., Xie Q., Chen Z., Li Y.
Ceramide synthase 1 (CERS1) is the most highly expressed CERS in the central nervous system, and ceramide with an 18-carbon-containing fatty acid chain (C18-ceramide) in the brain plays important roles in signaling and sphingolipid development. However, the roles of CERS1 and C18-ceramide in gliom ... >> More
Ceramide synthase 1 (CERS1) is the most highly expressed CERS in the central nervous system, and ceramide with an 18-carbon-containing fatty acid chain (C18-ceramide) in the brain plays important roles in signaling and sphingolipid development. However, the roles of CERS1 and C18-ceramide in glioma are largely unknown. In the present study, measured by electrospray ionization linear ion trap mass spectrometry, C18-ceramide was significantly lower in glioma tumor tissues compared with controls (<i>P</i> < 0.001), indicating that C18-ceramide might have a role in glioma. These roles were examined by reconstitution of C18-ceramide in U251 and A172 glioma cells via addition of exogenous C18-ceramide or overexpression of CERS1, which has been shown to specifically induce the generation of C18-ceramide. Overexpression of CERS1 or adding exogenous C18-ceramide inhibited cell viability and induced cell death by activating endoplasmic reticulum stress, which induced lethal autophagy and inhibited PI3K/AKT signal pathway in U251 and A172 glioma cells. Moreover, overexpression of CERS1 or adding exogenous C18-ceramide increased the sensitivity of U251 and A172 glioma cells to teniposide (VM-26). Thus, the combined therapy of CERS1/C18-ceramide and VM-26 may be a novel therapeutic strategy for the treatment of human glioma. << Less
-
Upstream of growth and differentiation factor 1 (uog1), a mammalian homolog of the yeast longevity assurance gene 1 (LAG1), regulates N-stearoyl-sphinganine (C18-(dihydro)ceramide) synthesis in a fumonisin B1-independent manner in mammalian cells.
Venkataraman K., Riebeling C., Bodennec J., Riezman H., Allegood J.C., Sullards M.C., Merrill A.H. Jr., Futerman A.H.
The longevity assurance gene (LAG1) and its homolog (LAC1) are required for acyl-CoA-dependent synthesis of ceramides containing very long acyl chain (e.g. C26) fatty acids in yeast, and a homolog of LAG1, ASC1, confers resistance in plants to fumonisin B(1), an inhibitor of ceramide synthesis. To ... >> More
The longevity assurance gene (LAG1) and its homolog (LAC1) are required for acyl-CoA-dependent synthesis of ceramides containing very long acyl chain (e.g. C26) fatty acids in yeast, and a homolog of LAG1, ASC1, confers resistance in plants to fumonisin B(1), an inhibitor of ceramide synthesis. To understand further the mechanism of regulation of ceramide synthesis, we now characterize a mammalian homolog of LAG1, upstream of growth and differentiation factor-1 (uog1). cDNA clones of uog1 were obtained from expression sequence-tagged clones and sub-cloned into a mammalian expression vector. Transient transfection of human embryonic kidney 293T cells with uog1 followed by metabolic labeling with [4,5-(3)H]sphinganine or L-3-[(3)H]serine demonstrated that uog1 conferred fumonisin B(1) resistance with respect to the ability of the cells to continue to produce ceramide. Surprisingly, this ceramide was channeled into neutral glycosphingolipids but not into gangliosides. Electrospray tandem mass spectrometry confirmed the elevation in sphingolipids and revealed that the ceramides and neutral glycosphingolipids of uog1-transfected cells contain primarily stearic acid (C18), that this enrichment was further increased by FB(1), and that the amount of stearic acid in sphingomyelin was also increased. UOG1 was localized to the endoplasmic reticulum, demonstrating that the fatty acid selectivity and the fumonisin B(1) resistance are not due to a subcellular localization different from that found previously for ceramide synthase activity. Furthermore, in vitro assays of uog1-transfected cells demonstrated elevated ceramide synthase activity when stearoyl-CoA but not palmitoyl-CoA was used as substrate. We propose a role for UOG1 in regulating C18-ceramide (N-stearoyl-sphinganine) synthesis, and we note that not only is this the first case of ceramide formation in mammalian cells with such a high degree of fatty acid specificity, but also that the N-stearoyl-sphinganine produced by UOG1 most significantly impacts neutral glycosphingolipid synthesis. << Less
J. Biol. Chem. 277:35642-35649(2002) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
A fluorescent assay for ceramide synthase activity.
Kim H.J., Qiao Q., Toop H.D., Morris J.C., Don A.S.
The sphingolipids are a diverse family of lipids with important roles in membrane compartmentalization, intracellular signaling, and cell-cell recognition. The central sphingolipid metabolite is ceramide, formed by the transfer of a variable length fatty acid from coenzyme A to a sphingoid base, g ... >> More
The sphingolipids are a diverse family of lipids with important roles in membrane compartmentalization, intracellular signaling, and cell-cell recognition. The central sphingolipid metabolite is ceramide, formed by the transfer of a variable length fatty acid from coenzyme A to a sphingoid base, generally sphingosine or dihydrosphingosine (sphinganine) in mammals. This reaction is catalyzed by a family of six ceramide synthases (CerS1-6). CerS activity is usually assayed using either radioactive substrates or LC-MS/MS. We describe a CerS assay with fluorescent, NBD-labeled sphinganine as substrate. The assay is readily able to detect endogenous CerS activity when using amounts of cell or tissue homogenate protein that are lower than those reported for the radioactive assay, and the Michaelis-Menten constant was essentially the same for NBD-sphinganine and unlabeled sphinganine, indicating that NBD-sphinganine is a good substrate for these enzymes. Using our assay, we confirm that the new clinical immunosuppressant FTY720 is a competitive inhibitor of CerS activity, and show that inhibition requires the compound's lipid tail and amine headgroup. In summary, we describe a fluorescent assay for CerS activity that circumvents the need to use radioactive substrates, while being more accessible and cheaper than LC-MS based assays. << Less
J. Lipid Res. 53:1701-1707(2012) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.