Reaction participants Show >> << Hide
-
Namehelp_outline
a cytidine in tRNA
Identifier
RHEA-COMP:13670
Reactive part
help_outline
- Name help_outline CMP residue Identifier CHEBI:82748 Charge -1 Formula C9H11N3O7P SMILEShelp_outline Nc1ccn([C@@H]2O[C@H](COP([O-])(-*)=O)[C@@H](O-*)[C@H]2O)c(=O)n1 2D coordinates Mol file for the small molecule Search links Involved in 66 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline S-adenosyl-L-methionine Identifier CHEBI:59789 Charge 1 Formula C15H23N6O5S InChIKeyhelp_outline MEFKEPWMEQBLKI-AIRLBKTGSA-O SMILEShelp_outline C[S+](CC[C@H]([NH3+])C([O-])=O)C[C@H]1O[C@H]([C@H](O)[C@@H]1O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 904 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
a 5-methylcytidine in tRNA
Identifier
RHEA-COMP:15827
Reactive part
help_outline
- Name help_outline 5-methylcytidine 5'-phosphate residue Identifier CHEBI:74483 Charge -1 Formula C10H13N3O7P SMILEShelp_outline C1=C(C(=NC(N1[C@@H]2O[C@H](COP(*)(=O)[O-])[C@H]([C@H]2O)O*)=O)N)C 2D coordinates Mol file for the small molecule Search links Involved in 35 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline S-adenosyl-L-homocysteine Identifier CHEBI:57856 Charge 0 Formula C14H20N6O5S InChIKeyhelp_outline ZJUKTBDSGOFHSH-WFMPWKQPSA-N SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](CSCC[C@H]([NH3+])C([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 827 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:61468 | RHEA:61469 | RHEA:61470 | RHEA:61471 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
Gene Ontology help_outline |
Related reactions help_outline
Specific form(s) of this reaction
- RHEA:61990
- RHEA:61490
- RHEA:54142
- RHEA:54138
- RHEA:53078
- RHEA:51182
- RHEA:51174
- RHEA:51166
- RHEA:51162
- RHEA:42958
- RHEA:42954
- RHEA:42950
- RHEA:42946
- RHEA:42942
More general form(s) of this reaction
Publications
-
NSun2-mediated cytosine-5 methylation of vault noncoding RNA determines its processing into regulatory small RNAs.
Hussain S., Sajini A.A., Blanco S., Dietmann S., Lombard P., Sugimoto Y., Paramor M., Gleeson J.G., Odom D.T., Ule J., Frye M.
Autosomal-recessive loss of the NSUN2 gene has been identified as a causative link to intellectual disability disorders in humans. NSun2 is an RNA methyltransferase modifying cytosine-5 in transfer RNAs (tRNAs), yet the identification of cytosine methylation in other RNA species has been hampered ... >> More
Autosomal-recessive loss of the NSUN2 gene has been identified as a causative link to intellectual disability disorders in humans. NSun2 is an RNA methyltransferase modifying cytosine-5 in transfer RNAs (tRNAs), yet the identification of cytosine methylation in other RNA species has been hampered by the lack of sensitive and reliable molecular techniques. Here, we describe miCLIP as an additional approach for identifying RNA methylation sites in transcriptomes. miCLIP is a customized version of the individual-nucleotide-resolution crosslinking and immunoprecipitation (iCLIP) method. We confirm site-specific methylation in tRNAs and additional messenger and noncoding RNAs (ncRNAs). Among these, vault ncRNAs contained six NSun2-methylated cytosines, three of which were confirmed by RNA bisulfite sequencing. Using patient cells lacking the NSun2 protein, we further show that loss of cytosine-5 methylation in vault RNAs causes aberrant processing into Argonaute-associated small RNA fragments that can function as microRNAs. Thus, impaired processing of vault ncRNA may contribute to the etiology of NSun2-deficiency human disorders. << Less
Cell Rep. 4:255-261(2013) [PubMed] [EuropePMC]
This publication is cited by 4 other entries.