Reaction participants Show >> << Hide
- Name help_outline 1D-myo-inositol 3-phosphate Identifier CHEBI:58401 (Beilstein: 11180720) help_outline Charge -2 Formula C6H11O9P InChIKeyhelp_outline INAPMGSXUVUWAF-PTQMNWPWSA-L SMILEShelp_outline O[C@H]1[C@H](O)[C@H](O)[C@H](OP([O-])([O-])=O)[C@@H](O)[C@@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 11 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline a CDP-1,2-diacyl-sn-glycerol Identifier CHEBI:58332 Charge -2 Formula C14H17N3O15P2R2 SMILEShelp_outline Nc1ccn([C@@H]2O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@@H](COC([*])=O)OC([*])=O)[C@@H](O)[C@H]2O)c(=O)n1 2D coordinates Mol file for the small molecule Search links Involved in 19 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline a 1,2-diacyl-sn-glycero-3-phospho-(1D-myo-inositol-3-phosphate) Identifier CHEBI:58088 Charge -3 Formula C11H15O16P2R2 SMILEShelp_outline [H][C@@](COC([*])=O)(COP([O-])(=O)O[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](OP([O-])([O-])=O)[C@H]1O)OC([*])=O 2D coordinates Mol file for the small molecule Search links Involved in 13 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CMP Identifier CHEBI:60377 Charge -2 Formula C9H12N3O8P InChIKeyhelp_outline IERHLVCPSMICTF-XVFCMESISA-L SMILEShelp_outline Nc1ccn([C@@H]2O[C@H](COP([O-])([O-])=O)[C@@H](O)[C@H]2O)c(=O)n1 2D coordinates Mol file for the small molecule Search links Involved in 164 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:60504 | RHEA:60505 | RHEA:60506 | RHEA:60507 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
MetaCyc help_outline |
Related reactions help_outline
Specific form(s) of this reaction
Publications
-
A revised biosynthetic pathway for phosphatidylinositol in Mycobacteria.
Morii H., Ogawa M., Fukuda K., Taniguchi H., Koga Y.
For the last decade, it has been believed that phosphatidylinositol (PI) in mycobacteria is synthesized from free inositol and CDP-diacylglycerol by PI synthase in the presence of ATP. The role of ATP in this process, however, is not understood. Additionally, the PI synthase activity is extremely ... >> More
For the last decade, it has been believed that phosphatidylinositol (PI) in mycobacteria is synthesized from free inositol and CDP-diacylglycerol by PI synthase in the presence of ATP. The role of ATP in this process, however, is not understood. Additionally, the PI synthase activity is extremely low compared with the PI synthase activity of yeast. When CDP-diacylglycerol and [(14)C]1L-myo-inositol 1-phosphate were incubated with the cell wall components of Mycobacterium smegmatis, both phosphatidylinositol phosphate (PIP) and PI were formed, as identified by fast atom bombardment-mass spectrometry and thin-layer chromatography. PI was formed from PIP by incubation with the cell wall components. Thus, mycobacterial PI was synthesized from CDP-diacylglycerol and myo-inositol 1-phosphate via PIP, which was dephosphorylated to PI. The gene-encoding PIP synthase from four species of mycobacteria was cloned and expressed in Escherichia coli, and PIP synthase activity was confirmed. A very low, but significant level of free [(3)H]inositol was incorporated into PI in mycobacterial cell wall preparations, but not in recombinant E. coli cell homogenates. This activity could be explained by the presence of two minor PI metabolic pathways: PI/inositol exchange reaction and phosphorylation of inositol by ATP prior to entering the PIP synthase pathway. << Less
J. Biochem. 148:593-602(2010) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
Structure of Mycobacterium tuberculosis phosphatidylinositol phosphate synthase reveals mechanism of substrate binding and metal catalysis.
Grave K., Bennett M.D., Hoegbom M.
Tuberculosis causes over one million yearly deaths, and drug resistance is rapidly developing. <i>Mycobacterium tuberculosis</i> phosphatidylinositol phosphate synthase (PgsA1) is an integral membrane enzyme involved in biosynthesis of inositol-derived phospholipids required for formation of the m ... >> More
Tuberculosis causes over one million yearly deaths, and drug resistance is rapidly developing. <i>Mycobacterium tuberculosis</i> phosphatidylinositol phosphate synthase (PgsA1) is an integral membrane enzyme involved in biosynthesis of inositol-derived phospholipids required for formation of the mycobacterial cell wall, and a potential drug target. Here we present three crystal structures of <i>M. tuberculosis</i> PgsA1: in absence of substrates (2.9 Å), in complex with Mn<sup>2+</sup> and citrate (1.9 Å), and with the CDP-DAG substrate (1.8 Å). The structures reveal atomic details of substrate binding as well as coordination and dynamics of the catalytic metal site. In addition, molecular docking supported by mutagenesis indicate a binding mode for the second substrate, D-<i>myo</i>-inositol-3-phosphate. Together, the data describe the structural basis for <i>M. tuberculosis</i> phosphatidylinositol phosphate synthesis and suggest a refined general catalytic mechanism-including a substrate-induced carboxylate shift-for Class I CDP-alcohol phosphotransferases, enzymes essential for phospholipid biosynthesis in all domains of life. << Less
Commun. Biol. 2:175-175(2019) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.