Enzymes
UniProtKB help_outline | 2,656 proteins |
Enzyme class help_outline |
|
GO Molecular Function help_outline |
|
Reaction participants Show >> << Hide
-
Namehelp_outline
L-lysyl20-[histone H4]
Identifier
RHEA-COMP:15554
Reactive part
help_outline
- Name help_outline L-lysine residue Identifier CHEBI:29969 Charge 1 Formula C6H13N2O Positionhelp_outline 20 SMILEShelp_outline C([C@@H](C(*)=O)N*)CCC[NH3+] 2D coordinates Mol file for the small molecule Search links Involved in 136 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline S-adenosyl-L-methionine Identifier CHEBI:59789 Charge 1 Formula C15H23N6O5S InChIKeyhelp_outline MEFKEPWMEQBLKI-AIRLBKTGSA-O SMILEShelp_outline C[S+](CC[C@H]([NH3+])C([O-])=O)C[C@H]1O[C@H]([C@H](O)[C@@H]1O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 868 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
N6-methyl-L-lysyl20-[histone H4]
Identifier
RHEA-COMP:15555
Reactive part
help_outline
- Name help_outline N6-methyl-L-lysine residue Identifier CHEBI:61929 Charge 1 Formula C7H15N2O Positionhelp_outline 20 SMILEShelp_outline C([C@@H](N*)CCCC[NH2+]C)(=O)* 2D coordinates Mol file for the small molecule Search links Involved in 42 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline S-adenosyl-L-homocysteine Identifier CHEBI:57856 Charge 0 Formula C14H20N6O5S InChIKeyhelp_outline ZJUKTBDSGOFHSH-WFMPWKQPSA-N SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](CSCC[C@H]([NH3+])C([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 792 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:60344 | RHEA:60345 | RHEA:60346 | RHEA:60347 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
MetaCyc help_outline |
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Methylation of histone H4 lysine 20 controls recruitment of Crb2 to sites of DNA damage.
Sanders S.L., Portoso M., Mata J., Baehler J., Allshire R.C., Kouzarides T.
Histone lysine methylation is a key regulator of gene expression and heterochromatin function, but little is known as to how this modification impinges on other chromatin activities. Here we demonstrate that a previously uncharacterized SET domain protein, Set9, is responsible for H4-K20 methylati ... >> More
Histone lysine methylation is a key regulator of gene expression and heterochromatin function, but little is known as to how this modification impinges on other chromatin activities. Here we demonstrate that a previously uncharacterized SET domain protein, Set9, is responsible for H4-K20 methylation in the fission yeast Schizosaccharomyces pombe. Surprisingly, H4-K20 methylation does not have any apparent role in the regulation of gene expression or heterochromatin function. Rather, we find the modification has a role in DNA damage response. Loss of Set9 activity or mutation of H4-K20 markedly impairs cell survival after genotoxic challenge and compromises the ability of cells to maintain checkpoint mediated cell cycle arrest. Genetic experiments link Set9 to Crb2, a homolog of the mammalian checkpoint protein 53BP1, and the enzyme is required for Crb2 localization to sites of DNA damage. These results argue that H4-K20 methylation functions as a "histone mark" required for the recruitment of the checkpoint protein Crb2. << Less
Cell 119:603-614(2004) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.
-
The histone methyltransferase SET8 is required for S-phase progression.
Jorgensen S., Elvers I., Trelle M.B., Menzel T., Eskildsen M., Jensen O.N., Helleday T., Helin K., Sorensen C.S.
Chromatin structure and function is influenced by histone posttranslational modifications. SET8 (also known as PR-Set7 and SETD8) is a histone methyltransferase that monomethylates histonfe H4-K20. However, a function for SET8 in mammalian cell proliferation has not been determined. We show that s ... >> More
Chromatin structure and function is influenced by histone posttranslational modifications. SET8 (also known as PR-Set7 and SETD8) is a histone methyltransferase that monomethylates histonfe H4-K20. However, a function for SET8 in mammalian cell proliferation has not been determined. We show that small interfering RNA inhibition of SET8 expression leads to decreased cell proliferation and accumulation of cells in S phase. This is accompanied by DNA double-strand break (DSB) induction and recruitment of the DNA repair proteins replication protein A, Rad51, and 53BP1 to damaged regions. SET8 depletion causes DNA damage specifically during replication, which induces a Chk1-mediated S-phase checkpoint. Furthermore, we find that SET8 interacts with proliferating cell nuclear antigen through a conserved motif, and SET8 is required for DNA replication fork progression. Finally, codepletion of Rad51, an important homologous recombination repair protein, abrogates the DNA damage after SET8 depletion. Overall, we show that SET8 is essential for genomic stability in mammalian cells and that decreased expression of SET8 results in DNA damage and Chk1-dependent S-phase arrest. << Less
-
PR-Set7 is a nucleosome-specific methyltransferase that modifies lysine 20 of histone H4 and is associated with silent chromatin.
Nishioka K., Rice J.C., Sarma K., Erdjument-Bromage H., Werner J., Wang Y., Chuikov S., Valenzuela P., Tempst P., Steward R., Lis J.T., Allis C.D., Reinberg D.
We have purified a human histone H4 lysine 20 methyltransferase and cloned the encoding gene, PR/SET07. A mutation in Drosophila pr-set7 is lethal: second instar larval death coincides with the loss of H4 lysine 20 methylation, indicating a fundamental role for PR-Set7 in development. Transcriptio ... >> More
We have purified a human histone H4 lysine 20 methyltransferase and cloned the encoding gene, PR/SET07. A mutation in Drosophila pr-set7 is lethal: second instar larval death coincides with the loss of H4 lysine 20 methylation, indicating a fundamental role for PR-Set7 in development. Transcriptionally competent regions lack H4 lysine 20 methylation, but the modification coincided with condensed chromosomal regions on polytene chromosomes, including chromocenter and euchromatic arms. The Drosophila male X chromosome, which is hyperacetylated at H4 lysine 16, has significantly decreased levels of lysine 20 methylation compared to that of females. In vitro, methylation of lysine 20 and acetylation of lysine 16 on the H4 tail are competitive. Taken together, these results support the hypothesis that methylation of H4 lysine 20 maintains silent chromatin, in part, by precluding neighboring acetylation on the H4 tail. << Less
Mol. Cell 9:1201-1213(2002) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Purification and functional characterization of SET8, a nucleosomal histone H4-lysine 20-specific methyltransferase.
Fang J., Feng Q., Ketel C.S., Wang H., Cao R., Xia L., Erdjument-Bromage H., Tempst P., Simon J.A., Zhang Y.
<h4>Background</h4>Covalent modifications of histone N-terminal tails play fundamental roles in regulating chromatin structure and function. Extensive studies have established that acetylation of specific lysine residues in the histone tails plays an important role in transcriptional regulation. B ... >> More
<h4>Background</h4>Covalent modifications of histone N-terminal tails play fundamental roles in regulating chromatin structure and function. Extensive studies have established that acetylation of specific lysine residues in the histone tails plays an important role in transcriptional regulation. Besides acetylation, recent studies have revealed that histone methylation also has significant effects on heterochromatin formation and transcriptional regulation. Histone methylation occurs on specific arginine and lysine residues of histones H3 and H4. Thus far, only 2 residues on histone H4 are known to be methylated. While H4-arginine 3 (H4-R3) methylation is mediated by PRMT1, the enzyme(s) responsible for H4-lysine 20 (H4-K20) methylation is not known.<h4>Results</h4>To gain insight into the function of H4-K20 methylation, we set out to identify the enzyme responsible for this modification. We purified and cloned a novel human SET domain-containing protein, named SET8, which specifically methylates H4 at K20. SET8 is a single subunit enzyme and prefers nucleosomal substrates. We find that H4-K20 methylation occurs in a wide range of higher eukaryotic organisms and that SET8 homologs exist in C. elegans and Drosophila. We demonstrate that the Drosophila SET8 homolog has the same substrate specificity as its human counterpart. Importantly, disruption of SET8 in Drosophila reduces levels of H4-K20 methylation in vivo and results in lethality. Although H4-K20 methylation does not correlate with gene activity, it appears to be regulated during the cell cycle.<h4>Conclusions</h4>We identified and characterized an evolutionarily conserved nucleosomal H4-K20-specific methyltransferase and demonstrated its essential role in Drosophila development. << Less
Curr. Biol. 12:1086-1099(2002) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Histone H4 lysine 20 methylation: key player in epigenetic regulation of genomic integrity.
Jorgensen S., Schotta G., Sorensen C.S.
Maintenance of genomic integrity is essential to ensure normal organismal development and to prevent diseases such as cancer. Nuclear DNA is packaged into chromatin, and thus genome maintenance can be influenced by distinct chromatin environments. In particular, post-translational modifications of ... >> More
Maintenance of genomic integrity is essential to ensure normal organismal development and to prevent diseases such as cancer. Nuclear DNA is packaged into chromatin, and thus genome maintenance can be influenced by distinct chromatin environments. In particular, post-translational modifications of histones have emerged as key regulators of genomic integrity. Intense research during the past few years has revealed histone H4 lysine 20 methylation (H4K20me) as critically important for the biological processes that ensure genome integrity, such as DNA damage repair, DNA replication and chromatin compaction. The distinct H4K20 methylation states are mediated by SET8/PR-Set7 that catalyses monomethylation of H4K20, whereas SUV4-20H1 and SUV4-20H2 enzymes mediate further H4K20 methylation to H4K20me2 and H4K20me3. Disruption of these H4K20-specific histone methyltransferases leads to genomic instability, demonstrating the important functions of H4K20 methylation in genome maintenance. In this review, we explain molecular mechanisms underlying these defects and discuss novel ideas for furthering our understanding of genome maintenance in higher eukaryotes. << Less
Nucleic Acids Res 41:2797-2806(2013) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Monomethylation of histone H4-lysine 20 is involved in chromosome structure and stability and is essential for mouse development.
Oda H., Okamoto I., Murphy N., Chu J., Price S.M., Shen M.M., Torres-Padilla M.E., Heard E., Reinberg D.
PR-Set7/Set8/KMT5A is the sole enzyme known to catalyze monomethylation of histone H4 lysine 20 (H4K20) and is present only in multicellular organisms that compact a large fraction of their DNA. We found that mouse embryos that are homozygous null mutants for the gene PR-Set7 display early embryon ... >> More
PR-Set7/Set8/KMT5A is the sole enzyme known to catalyze monomethylation of histone H4 lysine 20 (H4K20) and is present only in multicellular organisms that compact a large fraction of their DNA. We found that mouse embryos that are homozygous null mutants for the gene PR-Set7 display early embryonic lethality prior to the eight-cell stage. Death was due to the absence of PR-Set7 catalytic activity, since microinjection of the wild type, but not a catalytically inactive version, into two-cell embryos rescued the phenotype. A lack of PR-Set7 activity resulted not only in depletion of H4K20me1 but also in reduced levels of the H4K20me2/3 marks catalyzed by the Suv4-20h1/h2 enzymes, implying that H4K20me1 may be essential for the function of these enzymes to ensure the dimethylated and trimethylated states. Embryonic stem cells that were inducibly deleted for PR-Set7 passed through an initial G(2)/M phase, but the progeny were defective at the subsequent S and G(2)/M phases, exhibiting a delay in their cell cycle, accumulation at G(2)/M, massive DNA damage, and improper mitotic chromosome condensation. Cell cycle analysis after synchronization indicated that the defects were a consequence of decreased H4K20me1 due to the absence of PR-Set7. Most importantly, the lack of H4K20me1 also resulted in defects in chromosome condensation in interphase nuclei. These results demonstrate the critical role of H4K20 monomethylation in mammals in a developmental context. << Less
Comments
RHEA:60344 part of RHEA:64456