Reaction participants Show >> << Hide
-
Namehelp_outline
L-lysyl79-[histone H3]
Identifier
RHEA-COMP:15549
Reactive part
help_outline
- Name help_outline L-lysine residue Identifier CHEBI:29969 Charge 1 Formula C6H13N2O Positionhelp_outline 79 SMILEShelp_outline C([C@@H](C(*)=O)N*)CCC[NH3+] 2D coordinates Mol file for the small molecule Search links Involved in 137 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline S-adenosyl-L-methionine Identifier CHEBI:59789 Charge 1 Formula C15H23N6O5S InChIKeyhelp_outline MEFKEPWMEQBLKI-AIRLBKTGSA-O SMILEShelp_outline C[S+](CC[C@H]([NH3+])C([O-])=O)C[C@H]1O[C@H]([C@H](O)[C@@H]1O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 904 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
N6,N6,N6-trimethyl-L-lysyl79-[histone H3]
Identifier
RHEA-COMP:15552
Reactive part
help_outline
- Name help_outline N6,N6,N6-trimethyl-L-lysine residue Identifier CHEBI:61961 Charge 1 Formula C9H19N2O Positionhelp_outline 79 SMILEShelp_outline *C(=O)[C@@H](N*)CCCC[N+](C)(C)C 2D coordinates Mol file for the small molecule Search links Involved in 29 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline S-adenosyl-L-homocysteine Identifier CHEBI:57856 Charge 0 Formula C14H20N6O5S InChIKeyhelp_outline ZJUKTBDSGOFHSH-WFMPWKQPSA-N SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](CSCC[C@H]([NH3+])C([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 827 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:60328 | RHEA:60329 | RHEA:60330 | RHEA:60331 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
MetaCyc help_outline |
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Lysine methylation within the globular domain of histone H3 by Dot1 is important for telomeric silencing and Sir protein association.
Ng H.H., Feng Q., Wang H., Erdjument-Bromage H., Tempst P., Zhang Y., Struhl K.
The amino-terminal histone tails are subject to covalent post-translational modifications such as acetylation, methylation, and phosphorylation. In the histone code hypothesis, these exposed and unstructured histone tails are accessible to a repertoire of regulatory factors that specifically recog ... >> More
The amino-terminal histone tails are subject to covalent post-translational modifications such as acetylation, methylation, and phosphorylation. In the histone code hypothesis, these exposed and unstructured histone tails are accessible to a repertoire of regulatory factors that specifically recognize the various modified histones, thereby generating altered chromatin structures that mediate specific biological responses. Here, we report that lysine (Lys) 79 of histone H3, which resides in the globular domain, is methylated in eukaryotic organisms. In the yeast Saccharomyces cerevisiae, Lys 79 of histone H3 is methylated by Dot1, a protein shown previously to play a role in telomeric silencing. Mutations of Lys 79 of histone H3 and mutations that abolish the catalytic activity of Dot1 impair telomeric silencing, suggesting that Dot1 mediates telomeric silencing largely through methylation of Lys 79. This defect in telomeric silencing might reflect an interaction between Sir proteins and Lys 79, because dot1 and Lys 79 mutations weaken the interaction of Sir2 and Sir3 with the telomeric region in vivo. Our results indicate that histone modifications in the core globular domain have important biological functions. << Less
Genes Dev. 16:1518-1527(2002) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.
-
Methylation of H3-lysine 79 is mediated by a new family of HMTases without a SET domain.
Feng Q., Wang H., Ng H.H., Erdjument-Bromage H., Tempst P., Struhl K., Zhang Y.
The N-terminal tails of core histones are subjected to multiple covalent modifications, including acetylation, methylation, and phosphorylation. Similar to acetylation, histone methylation has emerged as an important player in regulating chromatin dynamics and gene activity. Histone methylation oc ... >> More
The N-terminal tails of core histones are subjected to multiple covalent modifications, including acetylation, methylation, and phosphorylation. Similar to acetylation, histone methylation has emerged as an important player in regulating chromatin dynamics and gene activity. Histone methylation occurs on arginine and lysine residues and is catalyzed by two families of proteins, the protein arginine methyltransferase family and the SET-domain-containing methyltransferase family. Here, we report that lysine 79 (K79) of H3, located in the globular domain, can be methylated. K79 methylation occurs in a variety of organisms ranging from yeast to human. In budding yeast, K79 methylation is mediated by the silencing protein DOT1. Consistent with conservation of K79 methylation, DOT1 homologs can be found in a variety of eukaryotic organisms. We identified a human DOT1-like (DOT1L) protein and demonstrated that this protein possesses intrinsic H3-K79-specific histone methyltransferase (HMTase) activity in vitro and in vivo. Furthermore, we found that K79 methylation level is regulated throughout the cell cycle. Thus, our studies reveal a new methylation site and define a novel family of histone lysine methyltransferase. << Less
Curr. Biol. 12:1052-1058(2002) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.
-
Structure of the catalytic domain of human DOT1L, a non-SET domain nucleosomal histone methyltransferase.
Min J., Feng Q., Li Z., Zhang Y., Xu R.-M.
Dot1 is an evolutionarily conserved histone methyltransferase that methylates lysine-79 of histone H3 in the core domain. Unlike other histone methyltransferases, Dot1 does not contain a SET domain, and it specifically methylates nucleosomal histone H3. We have solved a 2.5 A resolution structure ... >> More
Dot1 is an evolutionarily conserved histone methyltransferase that methylates lysine-79 of histone H3 in the core domain. Unlike other histone methyltransferases, Dot1 does not contain a SET domain, and it specifically methylates nucleosomal histone H3. We have solved a 2.5 A resolution structure of the catalytic domain of human Dot1, hDOT1L, in complex with S-adenosyl-L-methionine (SAM). The structure reveals a unique organization of a mainly alpha-helical N-terminal domain and a central open alpha/beta structure, an active site consisting of a SAM binding pocket, and a potential lysine binding channel. We also show that a flexible, positively charged region at the C terminus of the catalytic domain is critical for nucleosome binding and enzymatic activity. These structural and biochemical analyses, combined with molecular modeling, provide mechanistic insights into the catalytic mechanism and nucleosomal specificity of Dot1 proteins. << Less
Cell 112:711-723(2003) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.
-
DOT1L/KMT4 recruitment and H3K79 methylation are ubiquitously coupled with gene transcription in mammalian cells.
Steger D.J., Lefterova M.I., Ying L., Stonestrom A.J., Schupp M., Zhuo D., Vakoc A.L., Kim J.E., Chen J., Lazar M.A., Blobel G.A., Vakoc C.R.
The histone H3 lysine 79 methyltransferase DOT1L/KMT4 can promote an oncogenic pattern of gene expression through binding with several MLL fusion partners found in acute leukemia. However, the normal function of DOT1L in mammalian gene regulation is poorly understood. Here we report that DOT1L rec ... >> More
The histone H3 lysine 79 methyltransferase DOT1L/KMT4 can promote an oncogenic pattern of gene expression through binding with several MLL fusion partners found in acute leukemia. However, the normal function of DOT1L in mammalian gene regulation is poorly understood. Here we report that DOT1L recruitment is ubiquitously coupled with active transcription in diverse mammalian cell types. DOT1L preferentially occupies the proximal transcribed region of active genes, correlating with enrichment of H3K79 di- and trimethylation. Furthermore, Dot1l mutant fibroblasts lacked H3K79 di- and trimethylation at all sites examined, indicating that DOT1L is the sole enzyme responsible for these marks. Importantly, we identified chromatin immunoprecipitation (ChIP) assay conditions necessary for reliable H3K79 methylation detection. ChIP-chip tiling arrays revealed that levels of all degrees of genic H3K79 methylation correlate with mRNA abundance and dynamically respond to changes in gene activity. Conversion of H3K79 monomethylation into di- and trimethylation correlated with the transition from low-to high-level gene transcription. We also observed enrichment of H3K79 monomethylation at intergenic regions occupied by DNA-binding transcriptional activators. Our findings highlight several similarities between the patterning of H3K4 methylation and that of H3K79 methylation in mammalian chromatin, suggesting a widespread mechanism for parallel or sequential recruitment of DOT1L and MLL to genes in their normal "on" state. << Less
Mol Cell Biol 28:2825-2839(2008) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.
Comments
Multi-step reaction: RHEA:60332 + RHEA:60336 + RHEA:60340