Enzymes
UniProtKB help_outline | 6,083 proteins |
Enzyme class help_outline |
|
GO Molecular Function help_outline |
|
Reaction participants Show >> << Hide
-
Namehelp_outline
N6,N6,N6-trimethyl-L-lysyl4-[histone H3]
Identifier
RHEA-COMP:15537
Reactive part
help_outline
- Name help_outline N6,N6,N6-trimethyl-L-lysine residue Identifier CHEBI:61961 Charge 1 Formula C9H19N2O Positionhelp_outline 4 SMILEShelp_outline *C(=O)[C@@H](N*)CCCC[N+](C)(C)C 2D coordinates Mol file for the small molecule Search links Involved in 29 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 2-oxoglutarate Identifier CHEBI:16810 (CAS: 64-15-3) help_outline Charge -2 Formula C5H4O5 InChIKeyhelp_outline KPGXRSRHYNQIFN-UHFFFAOYSA-L SMILEShelp_outline [O-]C(=O)CCC(=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 426 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline O2 Identifier CHEBI:15379 (CAS: 7782-44-7) help_outline Charge 0 Formula O2 InChIKeyhelp_outline MYMOFIZGZYHOMD-UHFFFAOYSA-N SMILEShelp_outline O=O 2D coordinates Mol file for the small molecule Search links Involved in 2,727 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
L-lysyl4-[histone H3]
Identifier
RHEA-COMP:15547
Reactive part
help_outline
- Name help_outline L-lysine residue Identifier CHEBI:29969 Charge 1 Formula C6H13N2O SMILEShelp_outline C([C@@H](C(*)=O)N*)CCC[NH3+] 2D coordinates Mol file for the small molecule Search links Involved in 137 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline formaldehyde Identifier CHEBI:16842 (CAS: 50-00-0) help_outline Charge 0 Formula CH2O InChIKeyhelp_outline WSFSSNUMVMOOMR-UHFFFAOYSA-N SMILEShelp_outline [H]C([H])=O 2D coordinates Mol file for the small molecule Search links Involved in 141 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline succinate Identifier CHEBI:30031 (CAS: 56-14-4) help_outline Charge -2 Formula C4H4O4 InChIKeyhelp_outline KDYFGRWQOYBRFD-UHFFFAOYSA-L SMILEShelp_outline [O-]C(=O)CCC([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 332 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CO2 Identifier CHEBI:16526 (CAS: 124-38-9) help_outline Charge 0 Formula CO2 InChIKeyhelp_outline CURLTUGMZLYLDI-UHFFFAOYSA-N SMILEShelp_outline O=C=O 2D coordinates Mol file for the small molecule Search links Involved in 1,006 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:60208 | RHEA:60209 | RHEA:60210 | RHEA:60211 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
MetaCyc help_outline |
Publications
-
Demethylation of trimethylated histone H3 Lys4 in vivo by JARID1 JmjC proteins.
Seward D.J., Cubberley G., Kim S., Schonewald M., Zhang L., Tripet B., Bentley D.L.
Histone H3 Lys4 trimethylation (H3-K4me3) is a conserved mark of actively transcribed chromatin. Using a conditional mutant of the yeast H3-K4 methyltransferase, Set1p, we demonstrate rapid turnover of H3-K4me3 and H3-K4me2 in vivo and show this process requires Yjr119Cp, of the JARID1 family of J ... >> More
Histone H3 Lys4 trimethylation (H3-K4me3) is a conserved mark of actively transcribed chromatin. Using a conditional mutant of the yeast H3-K4 methyltransferase, Set1p, we demonstrate rapid turnover of H3-K4me3 and H3-K4me2 in vivo and show this process requires Yjr119Cp, of the JARID1 family of JmjC proteins. Ectopic overexpression of mouse Jarid1B, a Yjr119Cp homolog, greatly diminished H3-K4me3 and H3-K4me2 in HeLa cells, suggesting these proteins function as K4 demethylases in vivo. << Less
Nat. Struct. Mol. Biol. 14:240-242(2007) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.
-
Structural basis of a histone H3 lysine 4 demethylase required for stem elongation in rice.
Chen Q., Chen X., Wang Q., Zhang F., Lou Z., Zhang Q., Zhou D.X.
Histone lysine methylation is an important epigenetic modification in regulating chromatin structure and gene expression. Histone H3 lysine 4 methylation (H3K4me), which can be in a mono-, di-, or trimethylated state, has been shown to play an important role in gene expression involved in plant de ... >> More
Histone lysine methylation is an important epigenetic modification in regulating chromatin structure and gene expression. Histone H3 lysine 4 methylation (H3K4me), which can be in a mono-, di-, or trimethylated state, has been shown to play an important role in gene expression involved in plant developmental control and stress adaptation. However, the resetting mechanism of this epigenetic modification is not yet fully understood. In this work, we identified a JmjC domain-containing protein, JMJ703, as a histone lysine demethylase that specifically reverses all three forms of H3K4me in rice. Loss-of-function mutation of the gene affected stem elongation and plant growth, which may be related to increased expression of cytokinin oxidase genes in the mutant. Analysis of crystal structure of the catalytic core domain (c-JMJ703) of the protein revealed a general structural similarity with mammalian and yeast JMJD2 proteins that are H3K9 and H3K36 demethylases. However, several specific features were observed in the structure of c-JMJ703. Key residues that interact with cofactors Fe(II) and N-oxalylglycine and the methylated H3K4 substrate peptide were identified and were shown to be essential for the demethylase activity in vivo. Several key residues are specifically conserved in known H3K4 demethylases, suggesting that they may be involved in the specificity for H3K4 demethylation. << Less
-
The retinoblastoma binding protein RBP2 is an H3K4 demethylase.
Klose R.J., Yan Q., Tothova Z., Yamane K., Erdjument-Bromage H., Tempst P., Gilliland D.G., Zhang Y., Kaelin W.G. Jr.
Changes in histone methylation status regulate chromatin structure and DNA-dependent processes such as transcription. Recent studies indicate that, analogous to other histone modifications, histone methylation is reversible. Retinoblastoma binding protein 2 (RBP2), a nuclear protein implicated in ... >> More
Changes in histone methylation status regulate chromatin structure and DNA-dependent processes such as transcription. Recent studies indicate that, analogous to other histone modifications, histone methylation is reversible. Retinoblastoma binding protein 2 (RBP2), a nuclear protein implicated in the regulation of transcription and differentiation by the retinoblastoma tumor suppressor protein, contains a JmjC domain recently defined as a histone demethylase signature motif. Here we report that RBP2 is a demethylase that specifically catalyzes demethylation on H3K4, whose methylation is normally associated with transcriptionally active genes. RBP2-/-mouse cells displayed enhanced transcription of certain cytokine genes, which, in the case of SDF1, was associated with increased H3K4 trimethylation. Furthermore, RBP2 specifically demethylated H3K4 in biochemical and cell-based assays. These studies provide mechanistic insights into transcriptional regulation by RBP2 and provide the first example of a mammalian enzyme capable of erasing trimethylated H3K4. << Less
Cell 128:889-900(2007) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.
-
The X-linked mental retardation gene SMCX/JARID1C defines a family of histone H3 lysine 4 demethylases.
Iwase S., Lan F., Bayliss P., de la Torre-Ubieta L., Huarte M., Qi H.H., Whetstine J.R., Bonni A., Roberts T.M., Shi Y.
Histone methylation regulates chromatin structure and transcription. The recently identified histone demethylase lysine-specific demethylase 1 (LSD1) is chemically restricted to demethylation of only mono- and di-but not trimethylated histone H3 lysine 4 (H3K4me3). We show that the X-linked mental ... >> More
Histone methylation regulates chromatin structure and transcription. The recently identified histone demethylase lysine-specific demethylase 1 (LSD1) is chemically restricted to demethylation of only mono- and di-but not trimethylated histone H3 lysine 4 (H3K4me3). We show that the X-linked mental retardation (XLMR) gene SMCX (JARID1C), which encodes a JmjC-domain protein, reversed H3K4me3 to di- and mono-but not unmethylated products. Other SMCX family members, including SMCY, RBP2, and PLU-1, also demethylated H3K4me3. SMCX bound H3K9me3 via its N-terminal PHD (plant homeodomain) finger, which may help coordinate H3K4 demethylation and H3K9 methylation in transcriptional repression. Significantly, several XLMR-patient point mutations reduced SMCX demethylase activity and binding to H3K9me3 peptides, respectively. Importantly, studies in zebrafish and primary mammalian neurons demonstrated a role for SMCX in neuronal survival and dendritic development and a link to the demethylase activity. Our findings thus identify a family of H3K4me3 demethylases and uncover a critical link between histone modifications and XLMR. << Less
Cell 128:1077-1088(2007) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.
-
RBP2 belongs to a family of demethylases, specific for tri-and dimethylated lysine 4 on histone 3.
Christensen J., Agger K., Cloos P.A.C., Pasini D., Rose S., Sennels L., Rappsilber J., Hansen K.H., Salcini A.E., Helin K.
Methylation of histones has been regarded as a stable modification defining the epigenetic program of the cell, which regulates chromatin structure and transcription. However, the recent discovery of histone demethylases has challenged the stable nature of histone methylation. Here we demonstrate ... >> More
Methylation of histones has been regarded as a stable modification defining the epigenetic program of the cell, which regulates chromatin structure and transcription. However, the recent discovery of histone demethylases has challenged the stable nature of histone methylation. Here we demonstrate that the JARID1 proteins RBP2, PLU1, and SMCX are histone demethylases specific for di- and trimethylated histone 3 lysine 4 (H3K4). Consistent with a role for the JARID1 Drosophila homolog Lid in regulating expression of homeotic genes during development, we show that RBP2 is displaced from Hox genes during embryonic stem (ES) cell differentiation correlating with an increase of their H3K4me3 levels and expression. Furthermore, we show that mutation or RNAi depletion of the C. elegans JARID1 homolog rbr-2 leads to increased levels of H3K4me3 during larval development and defects in vulva formation. Taken together, these results suggest that H3K4me3/me2 demethylation regulated by the JARID1 family plays an important role during development. << Less
Cell 128:1063-1076(2007) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.
Comments
Multi-step reaction: RHEA:60212 + RHEA:60216 + RHEA:60220