Enzymes
UniProtKB help_outline | 4,827 proteins |
Enzyme class help_outline |
|
GO Molecular Function help_outline |
|
Reaction participants Show >> << Hide
-
Namehelp_outline
N6,N6,N6-trimethyl-L-lysyl9-[histone H3]
Identifier
RHEA-COMP:15538
Reactive part
help_outline
- Name help_outline N6,N6,N6-trimethyl-L-lysine residue Identifier CHEBI:61961 Charge 1 Formula C9H19N2O Positionhelp_outline 9 SMILEShelp_outline *C(=O)[C@@H](N*)CCCC[N+](C)(C)C 2D coordinates Mol file for the small molecule Search links Involved in 29 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 2-oxoglutarate Identifier CHEBI:16810 (CAS: 64-15-3) help_outline Charge -2 Formula C5H4O5 InChIKeyhelp_outline KPGXRSRHYNQIFN-UHFFFAOYSA-L SMILEShelp_outline [O-]C(=O)CCC(=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 440 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline O2 Identifier CHEBI:15379 (CAS: 7782-44-7) help_outline Charge 0 Formula O2 InChIKeyhelp_outline MYMOFIZGZYHOMD-UHFFFAOYSA-N SMILEShelp_outline O=O 2D coordinates Mol file for the small molecule Search links Involved in 2,779 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
N6-methyl-L-lysyl9-[histone H3]
Identifier
RHEA-COMP:15542
Reactive part
help_outline
- Name help_outline N6-methyl-L-lysine residue Identifier CHEBI:61929 Charge 1 Formula C7H15N2O Positionhelp_outline 9 SMILEShelp_outline C([C@@H](N*)CCCC[NH2+]C)(=O)* 2D coordinates Mol file for the small molecule Search links Involved in 42 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline formaldehyde Identifier CHEBI:16842 (CAS: 50-00-0) help_outline Charge 0 Formula CH2O InChIKeyhelp_outline WSFSSNUMVMOOMR-UHFFFAOYSA-N SMILEShelp_outline [H]C([H])=O 2D coordinates Mol file for the small molecule Search links Involved in 141 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline succinate Identifier CHEBI:30031 (CAS: 56-14-4) help_outline Charge -2 Formula C4H4O4 InChIKeyhelp_outline KDYFGRWQOYBRFD-UHFFFAOYSA-L SMILEShelp_outline [O-]C(=O)CCC([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 340 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CO2 Identifier CHEBI:16526 (CAS: 124-38-9) help_outline Charge 0 Formula CO2 InChIKeyhelp_outline CURLTUGMZLYLDI-UHFFFAOYSA-N SMILEShelp_outline O=C=O 2D coordinates Mol file for the small molecule Search links Involved in 1,032 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:60200 | RHEA:60201 | RHEA:60202 | RHEA:60203 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
MetaCyc help_outline |
Publications
-
The transcriptional repressor JHDM3A demethylates trimethyl histone H3 lysine 9 and lysine 36.
Klose R.J., Yamane K., Bae Y., Zhang D., Erdjument-Bromage H., Tempst P., Wong J., Zhang Y.
Post-translational modification of chromatin has profound effects on many biological processes including transcriptional regulation, heterochromatin organization, and X-chromosome inactivation. Recent studies indicate that methylation on specific histone lysine (K) residues participates in many of ... >> More
Post-translational modification of chromatin has profound effects on many biological processes including transcriptional regulation, heterochromatin organization, and X-chromosome inactivation. Recent studies indicate that methylation on specific histone lysine (K) residues participates in many of these processes. Lysine methylation occurs in three distinct states, having either one (me1), two (me2) or three (me3) methyl groups attached to the amine group of the lysine side chain. These differences in modification state have an important role in defining how methylated chromatin is recognized and interpreted. Until recently, histone lysine methylation was considered a stable modification, but the identification of histone demethylase enzymes has demonstrated the reversibility of this epigenetic mark. So far, all characterized histone demethylases show enzymatic activity towards lysine residues modified in the me1 or me2 state, leaving open the possibility that me3 constitutes an irreversible modification. Here we demonstrate that JHDM3A (jumonji C (JmjC)-domain-containing histone demethylase 3A; also known as JMJD2A) is capable of removing the me3 group from modified H3 lysine 9 (H3K9) and H3 lysine 36 (H3K36). Overexpression of JHDM3A abrogates recruitment of HP1 (heterochromatin protein 1) to heterochromatin, indicating a role for JHDM3A in antagonizing methylated H3K9 nucleated events. siRNA-mediated knockdown of JHDM3A leads to increased levels of H3K9 methylation and upregulation of a JHDM3A target gene, ASCL2, indicating that JHDM3A may function in euchromatin to remove histone methylation marks that are associated with active transcription. << Less
Nature 442:312-316(2006) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.
-
The putative oncogene GASC1 demethylates tri- and dimethylated lysine 9 on histone H3.
Cloos P.A., Christensen J., Agger K., Maiolica A., Rappsilber J., Antal T., Hansen K.H., Helin K.
Methylation of lysine and arginine residues on histone tails affects chromatin structure and gene transcription. Tri- and dimethylation of lysine 9 on histone H3 (H3K9me3/me2) is required for the binding of the repressive protein HP1 and is associated with heterochromatin formation and transcripti ... >> More
Methylation of lysine and arginine residues on histone tails affects chromatin structure and gene transcription. Tri- and dimethylation of lysine 9 on histone H3 (H3K9me3/me2) is required for the binding of the repressive protein HP1 and is associated with heterochromatin formation and transcriptional repression in a variety of species. H3K9me3 has long been regarded as a 'permanent' epigenetic mark. In a search for proteins and complexes interacting with H3K9me3, we identified the protein GASC1 (gene amplified in squamous cell carcinoma 1), which belongs to the JMJD2 (jumonji domain containing 2) subfamily of the jumonji family, and is also known as JMJD2C. Here we show that three members of this subfamily of proteins demethylate H3K9me3/me2 in vitro through a hydroxylation reaction requiring iron and alpha-ketoglutarate as cofactors. Furthermore, we demonstrate that ectopic expression of GASC1 or other JMJD2 members markedly decreases H3K9me3/me2 levels, increases H3K9me1 levels, delocalizes HP1 and reduces heterochromatin in vivo. Previously, GASC1 was found to be amplified in several cell lines derived from oesophageal squamous carcinomas, and in agreement with a contribution of GASC1 to tumour development, inhibition of GASC1 expression decreases cell proliferation. Thus, in addition to identifying GASC1 as a histone trimethyl demethylase, we suggest a model for how this enzyme might be involved in cancer development, and propose it as a target for anti-cancer therapy. << Less
Nature 442:307-311(2006) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Rice jmjC domain-containing gene JMJ706 encodes H3K9 demethylase required for floral organ development.
Sun Q., Zhou D.X.
Histone lysine methylation is an important epigenetic modification with both activating and repressive roles in gene expression. Jumonji C (jmjC) domain-containing proteins have been shown to reverse histone methylation in nonplant model systems. Here, we show that plant Jumonji C proteins have bo ... >> More
Histone lysine methylation is an important epigenetic modification with both activating and repressive roles in gene expression. Jumonji C (jmjC) domain-containing proteins have been shown to reverse histone methylation in nonplant model systems. Here, we show that plant Jumonji C proteins have both conserved and specific features compared with mammalian homologues. In particular, the rice JMJD2 family jmjC gene JMJ706 is shown to encode a heterochromatin-enriched protein. The JMJ706 protein specifically reverses di- and trimethylations of lysine 9 of histone H3 (H3K9) in vitro. Loss-of-function mutations of the gene lead to increased di- and trimethylations of H3K9 and affect the spikelet development, including altered floral morphology and organ number. Gene expression and histone modification analysis indicates that JMJ706 regulates a subset of flower development regulatory genes. Taken together, our data suggest that rice JMJ706 encodes a heterochromatin-associated H3K9 demethylase involved in the regulation of flower development in rice. << Less
Proc. Natl. Acad. Sci. U.S.A. 105:13679-13684(2008) [PubMed] [EuropePMC]
-
Jmjd2b antagonizes H3K9 trimethylation at pericentric heterochromatin in mammalian cells.
Fodor B.D., Kubicek S., Yonezawa M., O'Sullivan R.J., Sengupta R., Perez-Burgos L., Opravil S., Mechtler K., Schotta G., Jenuwein T.
Histone lysine trimethyl states represent some of the most robust epigenetic modifications in eukaryotic chromatin. Using a candidate approach, we identified the subgroup of murine Jmjd2 proteins to antagonize H3K9me3 at pericentric heterochromatin. H3K27me3 and H4K20me3 marks are not impaired in ... >> More
Histone lysine trimethyl states represent some of the most robust epigenetic modifications in eukaryotic chromatin. Using a candidate approach, we identified the subgroup of murine Jmjd2 proteins to antagonize H3K9me3 at pericentric heterochromatin. H3K27me3 and H4K20me3 marks are not impaired in inducible Jmjd2b-GFP cell lines, but Jmjd2b also reduces H3K36 methylation. Since recombinant Jmjd2b appears as a very poor enzyme, we applied metabolic labeling with heavy methyl groups to demonstrate Jmjd2b-mediated removal of chromosomal H3K9me3 as an active process that occurs well before replication of chromatin. These data reveal that certain members of the jmjC class of hydroxylases can work in a pathway that actively antagonizes a histone lysine trimethyl state. << Less
Genes Dev 20:1557-1562(2006) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Reversal of histone lysine trimethylation by the JMJD2 family of histone demethylases.
Whetstine J.R., Nottke A., Lan F., Huarte M., Smolikov S., Chen Z., Spooner E., Li E., Zhang G., Colaiacovo M., Shi Y.
Histone methylation regulates chromatin structure, transcription, and epigenetic state of the cell. Histone methylation is dynamically regulated by histone methylases and demethylases such as LSD1 and JHDM1, which mediate demethylation of di- and monomethylated histones. It has been unclear whethe ... >> More
Histone methylation regulates chromatin structure, transcription, and epigenetic state of the cell. Histone methylation is dynamically regulated by histone methylases and demethylases such as LSD1 and JHDM1, which mediate demethylation of di- and monomethylated histones. It has been unclear whether demethylases exist that reverse lysine trimethylation. We show the JmjC domain-containing protein JMJD2A reversed trimethylated H3-K9/K36 to di- but not mono- or unmethylated products. Overexpression of JMJD2A but not a catalytically inactive mutant reduced H3-K9/K36 trimethylation levels in cultured cells. In contrast, RNAi depletion of the C. elegans JMJD2A homolog resulted in an increase in general H3-K9Me3 and localized H3-K36Me3 levels on meiotic chromosomes and triggered p53-dependent germline apoptosis. Additionally, other human JMJD2 subfamily members also functioned as trimethylation-specific demethylases, converting H3-K9Me3 to H3-K9Me2 and H3-K9Me1, respectively. Our finding that this family of demethylases generates different methylated states at the same lysine residue provides a mechanism for fine-tuning histone methylation. << Less
Cell 125:467-481(2006) [PubMed] [EuropePMC]
This publication is cited by 4 other entries.
Comments
Multi-step reaction: RHEA:60204 and RHEA:60192