Enzymes
UniProtKB help_outline | 2 proteins |
Reaction participants Show >> << Hide
- Name help_outline D-glucose Identifier CHEBI:4167 (CAS: 2280-44-6) help_outline Charge 0 Formula C6H12O6 InChIKeyhelp_outline WQZGKKKJIJFFOK-GASJEMHNSA-N SMILEShelp_outline OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 162 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline ATP Identifier CHEBI:30616 (Beilstein: 3581767) help_outline Charge -4 Formula C10H12N5O13P3 InChIKeyhelp_outline ZKHQWZAMYRWXGA-KQYNXXCUSA-J SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,284 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,264 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline ADP Identifier CHEBI:456216 (Beilstein: 3783669) help_outline Charge -3 Formula C10H12N5O10P2 InChIKeyhelp_outline XTWYTFMLZFPYCI-KQYNXXCUSA-K SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 841 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline phosphate Identifier CHEBI:43474 Charge -2 Formula HO4P InChIKeyhelp_outline NBIIXXVUZAFLBC-UHFFFAOYSA-L SMILEShelp_outline OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 1,002 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:60184 | RHEA:60185 | RHEA:60186 | RHEA:60187 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
MetaCyc help_outline |
Publications
-
Crystal structures of the ATPase subunit of the glucose ABC transporter from Sulfolobus solfataricus: nucleotide-free and nucleotide-bound conformations.
Verdon G., Albers S.V., Dijkstra B.W., Driessen A.J., Thunnissen A.M.
The ABC-ATPase GlcV energizes a binding protein-dependent ABC transporter that mediates glucose uptake in Sulfolobus solfataricus. Here, we report high-resolution crystal structures of GlcV in different states along its catalytic cycle: distinct monomeric nucleotide-free states and monomeric compl ... >> More
The ABC-ATPase GlcV energizes a binding protein-dependent ABC transporter that mediates glucose uptake in Sulfolobus solfataricus. Here, we report high-resolution crystal structures of GlcV in different states along its catalytic cycle: distinct monomeric nucleotide-free states and monomeric complexes with ADP-Mg(2+) as a product-bound state, and with AMPPNP-Mg(2+) as an ATP-like bound state. The structure of GlcV consists of a typical ABC-ATPase domain, comprising two subdomains, connected by a linker region to a C-terminal domain of unknown function. Comparisons of the nucleotide-free and nucleotide-bound structures of GlcV reveal re-orientations of the ABCalpha subdomain and the C-terminal domain relative to the ABCalpha/beta subdomain, and switch-like rearrangements in the P-loop and Q-loop regions. Additionally, large conformational differences are observed between the GlcV structures and those of other ABC-ATPases, further emphasizing the inherent flexibility of these proteins. Notably, a comparison of the monomeric AMPPNP-Mg(2+)-bound GlcV structure with that of the dimeric ATP-Na(+)-bound LolD-E171Q mutant reveals a +/-20 degrees rigid body re-orientation of the ABCalpha subdomain relative to the ABCalpha/beta subdomain, accompanied by a local conformational difference in the Q-loop. We propose that these differences represent conformational changes that may have a role in the mechanism of energy-transduction and/or allosteric control of the ABC-ATPase activity in bacterial importers. << Less
-
Glucose transport in the extremely thermoacidophilic Sulfolobus solfataricus involves a high-affinity membrane-integrated binding protein.
Albers S.V., Elferink M.G., Charlebois R.L., Sensen C.W., Driessen A.J., Konings W.N.
The archaeon Sulfolobus solfataricus grows optimally at 80 degrees C and pH 2.5 to 3.5 on carbon sources such as yeast extracts, tryptone, and various sugars. Cells rapidly accumulate glucose. This transport activity involves a membrane-bound glucose-binding protein that interacts with its substra ... >> More
The archaeon Sulfolobus solfataricus grows optimally at 80 degrees C and pH 2.5 to 3.5 on carbon sources such as yeast extracts, tryptone, and various sugars. Cells rapidly accumulate glucose. This transport activity involves a membrane-bound glucose-binding protein that interacts with its substrate with very high affinity (Kd of 0. 43 microM) and retains high glucose affinity at very low pH values (as low as pH 0.6). The binding protein was extracted with detergent and purified to homogeneity as a 65-kDa glycoprotein. The gene coding for the binding protein was identified in the S. solfataricus P2 genome by means of the amino-terminal amino acid sequence of the purified protein. Sequence analysis suggests that the protein is anchored to the membrane via an amino-terminal transmembrane segment. Neighboring genes encode two membrane proteins and an ATP-binding subunit that are transcribed in the reverse direction, whereas a homologous gene cluster in Pyrococcus horikoshii OT3 was found to be organized in an operon. These data indicate that S. solfataricus utilizes a binding-protein-dependent ATP-binding cassette transporter for the uptake of glucose. << Less
-
Sugar transport in Sulfolobus solfataricus is mediated by two families of binding protein-dependent ABC transporters.
Elferink M.G., Albers S.V., Konings W.N., Driessen A.J.
The extreme thermoacidophilic archaeon Sulfolobus solfataricus grows optimally at 80 degrees C and pH 3 and uses a variety of sugars as sole carbon and energy source. Glucose transport in this organism is mediated by a high-affinity binding protein-dependent ATP-binding cassette (ABC) transporter. ... >> More
The extreme thermoacidophilic archaeon Sulfolobus solfataricus grows optimally at 80 degrees C and pH 3 and uses a variety of sugars as sole carbon and energy source. Glucose transport in this organism is mediated by a high-affinity binding protein-dependent ATP-binding cassette (ABC) transporter. Sugar-binding studies revealed the presence of four additional membrane-bound binding proteins for arabinose, cellobiose, maltose and trehalose. These glycosylated binding proteins are subunits of ABC transporters that fall into two distinct groups: (i) monosaccharide transporters that are homologous to the sugar transport family containing a single ATPase and a periplasmic-binding protein that is processed at an unusual site at its amino-terminus; (ii) di- and oligosaccharide transporters, which are homologous to the family of oligo/dipeptide transporters that contain two different ATPases, and a binding protein that is synthesized with a typical bacterial signal sequence. The latter family has not been implicated in sugar transport before. These data indicate that binding protein-dependent transport is the predominant mechanism of transport for sugars in S. solfataricus. << Less