Enzymes
UniProtKB help_outline | 2 proteins |
Reaction participants Show >> << Hide
- Name help_outline ATP Identifier CHEBI:30616 (Beilstein: 3581767) help_outline Charge -4 Formula C10H12N5O13P3 InChIKeyhelp_outline ZKHQWZAMYRWXGA-KQYNXXCUSA-J SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,280 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline D-fructose Identifier CHEBI:37721 (Beilstein: 1680728; CAS: 57-48-7) help_outline Charge 0 Formula C6H12O6 InChIKeyhelp_outline RFSUNEUAIZKAJO-VRPWFDPXSA-N SMILEShelp_outline OC[C@H]1OC(O)(CO)[C@@H](O)[C@@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 26 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (Beilstein: 3587155; CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,204 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline ADP Identifier CHEBI:456216 (Beilstein: 3783669) help_outline Charge -3 Formula C10H12N5O10P2 InChIKeyhelp_outline XTWYTFMLZFPYCI-KQYNXXCUSA-K SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 841 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline phosphate Identifier CHEBI:43474 Charge -2 Formula HO4P InChIKeyhelp_outline NBIIXXVUZAFLBC-UHFFFAOYSA-L SMILEShelp_outline OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 992 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:60180 | RHEA:60181 | RHEA:60182 | RHEA:60183 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
Publications
-
Fructose uptake in Sinorhizobium meliloti is mediated by a high-affinity ATP-binding cassette transport system.
Lambert A., Osteras M., Mandon K., Poggi M.C., Le Rudulier D.
By transposon mutagenesis, we have isolated a mutant of Sinorhizobium meliloti which is totally unable to grow on fructose as sole carbon source as a consequence of its inability to transport this sugar. The cloning and sequencing analysis of the chromosomal DNA region flanking the TnphoA insertio ... >> More
By transposon mutagenesis, we have isolated a mutant of Sinorhizobium meliloti which is totally unable to grow on fructose as sole carbon source as a consequence of its inability to transport this sugar. The cloning and sequencing analysis of the chromosomal DNA region flanking the TnphoA insertion revealed the presence of six open reading frames (ORFs) organized in two loci, frcRS and frcBCAK, transcribed divergently. The frcBCA genes encode the characteristic components of an ATP-binding cassette transporter (FrcB, a periplasmic substrate binding protein, FrcC, an integral membrane permease, and FrcA, an ATP-binding cytoplasmic protein), which is the unique high-affinity (K(m) of 6 microM) fructose uptake system in S. meliloti. The FrcK protein shows homology with some kinases, while FrcR is probably a transcriptional regulator of the repressor-ORF-kinase family. The expression of S. meliloti frcBCAK in Escherichia coli, which transports fructose only via the phosphotransferase system, resulted in the detection of a periplasmic fructose binding activity, demonstrating that FrcB is the binding protein of the Frc transporter. The analysis of substrate specificities revealed that the Frc system is also a high-affinity transporter for ribose and mannose, which are both fructose competitors for the binding to the periplasmic FrcB protein. However, the Frc mutant was still able to grow on these sugars as sole carbon source, demonstrating the presence of at least one other uptake system for mannose and ribose in S. meliloti. The expression of the frcBC genes as determined by measurements of alkaline phosphatase activity was shown to be induced by mannitol and fructose, but not by mannose, ribose, glucose, or succinate, suggesting that the Frc system is primarily targeted towards fructose. Neither Nod nor Fix phenotypes were impared in the TnphoA mutant, demonstrating that fructose uptake is not essential for nodulation and nitrogen fixation, although FrcB protein is expressed in bacteroids isolated from alfalfa nodulated by S. meliloti wild-type strains. << Less
-
Fructose uptake in Bifidobacterium longum NCC2705 is mediated by an ATP-binding cassette transporter.
Wei X., Guo Y., Shao C., Sun Z., Zhurina D., Liu D., Liu W., Zou D., Jiang Z., Wang X., Zhao J., Shang W., Li X., Liao X., Huang L., Riedel C.U., Yuan J.
Recently, a putative ATP-binding cassette (ABC) transport system was identified in Bifidobacterium longum NCC2705 that is highly up-regulated during growth on fructose as the sole carbon source. Cloning and expression of the corresponding ORFs (bl0033-0036) result in efficient fructose uptake by b ... >> More
Recently, a putative ATP-binding cassette (ABC) transport system was identified in Bifidobacterium longum NCC2705 that is highly up-regulated during growth on fructose as the sole carbon source. Cloning and expression of the corresponding ORFs (bl0033-0036) result in efficient fructose uptake by bacteria. Sequence analysis reveals high similarity to typical ABC transport systems and suggests that these genes are organized as an operon. Expression of FruE is induced by fructose, ribose, or xylose and is able to bind these sugars with fructose as the preferred substrate. Our data suggest that BL0033-0036 constitute a high affinity fructose-specific ABC transporter of B. longum NCC2705. We thus suggest to rename the coding genes to fruEKFG and the corresponding proteins to FruE (sugar-binding protein), FruK (ATPase subunit), FruF, and FruG (membrane permeases). Furthermore, protein-protein interactions between the components of the transporter complex were determined by GST pulldown and Western blot analysis. This revealed interactions between the membrane subunits FruF and FruG with FruE, which in vivo is located on the external side of the membrane, and with the cytoplasmatic ATPase FruK. This is in line with the proposed model for bacterial ABC sugar transporters. << Less