Reaction participants Show >> << Hide
-
Namehelp_outline
3-O-[N-acetyl-α-D-glucosaminyl]-L-seryl-[protein]
Identifier
RHEA-COMP:15471
Reactive part
help_outline
- Name help_outline O-(N-acetyl-α-D-glucosaminyl)-L-serine residue Identifier CHEBI:143279 Charge 0 Formula C11H18N2O7 SMILEShelp_outline O1[C@@H]([C@H]([C@@H]([C@H]([C@H]1OC[C@H](N*)C(*)=O)NC(C)=O)O)O)CO 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline UDP-N-acetyl-α-D-glucosamine Identifier CHEBI:57705 (Beilstein: 4286654) help_outline Charge -2 Formula C17H25N3O17P2 InChIKeyhelp_outline LFTYTUAZOPRMMI-CFRASDGPSA-L SMILEShelp_outline CC(=O)N[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1OP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1O)n1ccc(=O)[nH]c1=O 2D coordinates Mol file for the small molecule Search links Involved in 88 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
3-O-[N-acetyl-β-D-glucosaminyl-(1→6)-N-acetyl-α-D-glucosaminyl]-L-seryl-[protein]
Identifier
RHEA-COMP:15466
Reactive part
help_outline
- Name help_outline N-acetyl-β-D-glucosaminyl-(1→6)-N-acetyl-α-D-glucosaminyl-L-serine residue Identifier CHEBI:143272 Charge 0 Formula C19H31N3O12 SMILEShelp_outline O1[C@@H]([C@H]([C@@H]([C@H]([C@H]1OC[C@H](N*)C(*)=O)NC(C)=O)O)O)CO[C@@H]2O[C@@H]([C@H]([C@@H]([C@H]2NC(C)=O)O)O)CO 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline UDP Identifier CHEBI:58223 Charge -3 Formula C9H11N2O12P2 InChIKeyhelp_outline XCCTYIAWTASOJW-XVFCMESISA-K SMILEShelp_outline O[C@@H]1[C@@H](COP([O-])(=O)OP([O-])([O-])=O)O[C@H]([C@@H]1O)n1ccc(=O)[nH]c1=O 2D coordinates Mol file for the small molecule Search links Involved in 576 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:59860 | RHEA:59861 | RHEA:59862 | RHEA:59863 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
Publications
-
Serine-rich repeat protein adhesins from Lactobacillus reuteri display strain specific glycosylation profiles.
Latousakis D., Nepravishta R., Rejzek M., Wegmann U., Le Gall G., Kavanaugh D., Colquhoun I.J., Frese S., MacKenzie D.A., Walter J., Angulo J., Field R.A., Juge N.
Lactobacillus reuteri is a gut symbiont inhabiting the gastrointestinal tract of numerous vertebrates. The surface-exposed serine-rich repeat protein (SRRP) is a major adhesin in Gram-positive bacteria. Using lectin and sugar nucleotide profiling of wild-type or L. reuteri isogenic mutants, MALDI- ... >> More
Lactobacillus reuteri is a gut symbiont inhabiting the gastrointestinal tract of numerous vertebrates. The surface-exposed serine-rich repeat protein (SRRP) is a major adhesin in Gram-positive bacteria. Using lectin and sugar nucleotide profiling of wild-type or L. reuteri isogenic mutants, MALDI-ToF-MS, LC-MS and GC-MS analyses of SRRPs, we showed that L. reuteri strains 100-23C (from rodent) and ATCC 53608 (from pig) can perform protein O-glycosylation and modify SRRP100-23 and SRRP53608 with Hex-Glc-GlcNAc and di-GlcNAc moieties, respectively. Furthermore, in vivo glycoengineering in E. coli led to glycosylation of SRRP53608 variants with α-GlcNAc and GlcNAcβ(1→6)GlcNAcα moieties. The glycosyltransferases involved in the modification of these adhesins were identified within the SecA2/Y2 accessory secretion system and their sugar nucleotide preference determined by saturation transfer difference NMR spectroscopy and differential scanning fluorimetry. Together, these findings provide novel insights into the cellular O-protein glycosylation pathways of gut commensal bacteria and potential routes for glycoengineering applications. << Less
Glycobiology 29:45-58(2019) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.