Reaction participants Show >> << Hide
- Name help_outline L-histidine Identifier CHEBI:57595 Charge 0 Formula C6H9N3O2 InChIKeyhelp_outline HNDVDQJCIGZPNO-YFKPBYRVSA-N SMILEShelp_outline [NH3+][C@@H](Cc1c[nH]cn1)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 36 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline S-adenosyl-L-methionine Identifier CHEBI:59789 Charge 1 Formula C15H23N6O5S InChIKeyhelp_outline MEFKEPWMEQBLKI-AIRLBKTGSA-O SMILEShelp_outline C[S+](CC[C@H]([NH3+])C([O-])=O)C[C@H]1O[C@H]([C@H](O)[C@@H]1O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 868 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline (2S)-2-amino-4-{[(1S)-1-carboxy-2-(1H-imidazol-4-yl)ethyl]amino}butanoate Identifier CHEBI:143196 Charge 0 Formula C10H16N4O4 InChIKeyhelp_outline PQUPEWJRDBYFHU-YUMQZZPRSA-N SMILEShelp_outline N=1C(=CNC1)C[C@H]([NH2+]CC[C@H]([NH3+])C(=O)[O-])C(=O)[O-] 2D coordinates Mol file for the small molecule Search links Involved in 4 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline S-methyl-5'-thioadenosine Identifier CHEBI:17509 (Beilstein: 42420; CAS: 2457-80-9) help_outline Charge 0 Formula C11H15N5O3S InChIKeyhelp_outline WUUGFSXJNOTRMR-IOSLPCCCSA-N SMILEShelp_outline CSC[C@H]1O[C@H]([C@H](O)[C@@H]1O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 34 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:59780 | RHEA:59781 | RHEA:59782 | RHEA:59783 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
MetaCyc help_outline |
Publications
-
Staphylopine, pseudopaline, and yersinopine dehydrogenases: A structural and kinetic analysis of a new functional class of opine dehydrogenase.
McFarlane J.S., Davis C.L., Lamb A.L.
Opine dehydrogenases (ODHs) from the bacterial pathogens <i>Staphylococcus aureus</i>, <i>Pseudomonas aeruginosa</i>, and <i>Yersinia pestis</i> perform the final enzymatic step in the biosynthesis of a new class of opine metallophores, which includes staphylopine, pseudopaline, and yersinopine, r ... >> More
Opine dehydrogenases (ODHs) from the bacterial pathogens <i>Staphylococcus aureus</i>, <i>Pseudomonas aeruginosa</i>, and <i>Yersinia pestis</i> perform the final enzymatic step in the biosynthesis of a new class of opine metallophores, which includes staphylopine, pseudopaline, and yersinopine, respectively. Growing evidence indicates an important role for this pathway in metal acquisition and virulence, including in lung and burn-wound infections (<i>P. aeruginosa</i>) and in blood and heart infections (<i>S. aureus</i>). Here, we present kinetic and structural characterizations of these three opine dehydrogenases. A steady-state kinetic analysis revealed that the three enzymes differ in α-keto acid and NAD(P)H substrate specificity and nicotianamine-like substrate stereoselectivity. The structural basis for these differences was determined from five ODH X-ray crystal structures, ranging in resolution from 1.9 to 2.5 Å, with or without NADP<sup>+</sup> bound. Variation in hydrogen bonding with NADPH suggested an explanation for the differential recognition of this substrate by these three enzymes. Our analysis further revealed candidate residues in the active sites required for binding of the α-keto acid and nicotianamine-like substrates and for catalysis. This work reports the first structural kinetic analyses of enzymes involved in opine metallophore biosynthesis in three important bacterial pathogens of humans. << Less
J. Biol. Chem. 293:8009-8019(2018) [PubMed] [EuropePMC]
This publication is cited by 4 other entries.
-
Biosynthesis of an Opine Metallophore by Pseudomonas aeruginosa.
McFarlane J.S., Lamb A.L.
Bacterial pathogenesis frequently requires metal acquisition by specialized, small-molecule metallophores. We hypothesized that the Gram-negative Pseudomonas aeruginosa encodes the enzymes nicotianamine synthase (NAS) and opine dehydrogenase (ODH), biosynthesizing a new class of opine metallophore ... >> More
Bacterial pathogenesis frequently requires metal acquisition by specialized, small-molecule metallophores. We hypothesized that the Gram-negative Pseudomonas aeruginosa encodes the enzymes nicotianamine synthase (NAS) and opine dehydrogenase (ODH), biosynthesizing a new class of opine metallophore, previously characterized only in the unrelated Gram-positive organism Staphylococcus aureus. The identity of this metallophore, herein named pseudopaline, was determined through measurements of binding affinity, the in vitro reconstitution of the biosynthetic pathway to screen potential substrates, and the confirmation of product formation by mass spectrometry. Pseudopaline and the S. aureus metallophore staphylopine exhibit opposite stereochemistry for the histidine moiety, indicating unique recognition by NAS. Additionally, we demonstrate SaODH catalysis in the presence of pyruvate, as previously shown, but also oxaloacetate, suggesting the potential for the production of a variant form of staphylopine, while PaODH specifically recognizes α-ketoglutarate. Both the staphylopine and pseudopaline operons have been implicated in the pathogenesis of key infectious disease states and warrant further study. << Less
Biochemistry 56:5967-5971(2017) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Pseudomonas aeruginosa zinc uptake in chelating environment is primarily mediated by the metallophore pseudopaline.
Lhospice S., Gomez N.O., Ouerdane L., Brutesco C., Ghssein G., Hajjar C., Liratni A., Wang S., Richaud P., Bleves S., Ball G., Borezee-Durant E., Lobinski R., Pignol D., Arnoux P., Voulhoux R.
Metal uptake is vital for all living organisms. In metal scarce conditions a common bacterial strategy consists in the biosynthesis of metallophores, their export in the extracellular medium and the recovery of a metal-metallophore complex through dedicated membrane transporters. Staphylopine is a ... >> More
Metal uptake is vital for all living organisms. In metal scarce conditions a common bacterial strategy consists in the biosynthesis of metallophores, their export in the extracellular medium and the recovery of a metal-metallophore complex through dedicated membrane transporters. Staphylopine is a recently described metallophore distantly related to plant nicotianamine that contributes to the broad-spectrum metal uptake capabilities of Staphylococcus aureus. Here we characterize a four-gene operon (PA4837-PA4834) in Pseudomonas aeruginosa involved in the biosynthesis and trafficking of a staphylopine-like metallophore named pseudopaline. Pseudopaline differs from staphylopine with regard to the stereochemistry of its histidine moiety associated with an alpha ketoglutarate moiety instead of pyruvate. In vivo, the pseudopaline operon is regulated by zinc through the Zur repressor. The pseudopaline system is involved in nickel uptake in poor media, and, most importantly, in zinc uptake in metal scarce conditions mimicking a chelating environment, thus reconciling the regulation of the cnt operon by zinc with its function as the main zinc importer under these metal scarce conditions. << Less
Sci. Rep. 7:17132-17132(2017) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.