Reaction participants Show >> << Hide
- Name help_outline (5Z,8Z,11Z,14Z)-eicosatetraenoyl-CoA Identifier CHEBI:57368 Charge -4 Formula C41H62N7O17P3S InChIKeyhelp_outline JDEPVTUUCBFJIW-YQVDHACTSA-J SMILEShelp_outline CCCCC\C=C/C\C=C/C\C=C/C\C=C/CCCC(=O)SCCNC(=O)CCNC(=O)[C@H](O)C(C)(C)COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 44 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
L-cysteinyl-[protein]
Identifier
RHEA-COMP:10131
Reactive part
help_outline
- Name help_outline L-cysteine residue Identifier CHEBI:29950 Charge 0 Formula C3H5NOS SMILEShelp_outline C(=O)(*)[C@@H](N*)CS 2D coordinates Mol file for the small molecule Search links Involved in 127 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CoA Identifier CHEBI:57287 (Beilstein: 11604429) help_outline Charge -4 Formula C21H32N7O16P3S InChIKeyhelp_outline RGJOEKWQDUBAIZ-IBOSZNHHSA-J SMILEShelp_outline CC(C)(COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12)[C@@H](O)C(=O)NCCC(=O)NCCS 2D coordinates Mol file for the small molecule Search links Involved in 1,500 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
S-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-L-cysteinyl-[protein]
Identifier
RHEA-COMP:15436
Reactive part
help_outline
- Name help_outline S-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-L-cysteinyl residue Identifier CHEBI:143202 Charge 0 Formula C23H35NO2S SMILEShelp_outline *C([C@@H](N*)CSC(=O)CCC/C=C\C/C=C\C/C=C\C/C=C\CCCCC)=O 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:59748 | RHEA:59749 | RHEA:59750 | RHEA:59751 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
Gene Ontology help_outline |
Related reactions help_outline
More general form(s) of this reaction
Publications
-
DHHC protein S-acyltransferases use similar ping-pong kinetic mechanisms but display different acyl-CoA specificities.
Jennings B.C., Linder M.E.
DHHC proteins catalyze the reversible S-acylation of proteins at cysteine residues, a modification important for regulating protein localization, stability, and activity. However, little is known about the kinetic mechanism of DHHC proteins. A high-performance liquid chromatography (HPLC), fluores ... >> More
DHHC proteins catalyze the reversible S-acylation of proteins at cysteine residues, a modification important for regulating protein localization, stability, and activity. However, little is known about the kinetic mechanism of DHHC proteins. A high-performance liquid chromatography (HPLC), fluorescent peptide-based assay for protein S-acylation activity was developed to characterize mammalian DHHC2 and DHHC3. Time courses and substrate saturation curves allowed the determination of V(max) and K(m) values for both the peptide N-myristoylated-GCG and palmitoyl-coenzyme A. DHHC proteins acylate themselves upon incubation with palmitoyl-CoA, which is hypothesized to reflect a transient acyl enzyme transfer intermediate. Single turnover assays with DHHC2 and DHHC3 demonstrated that a radiolabeled acyl group on the enzyme transferred to the protein substrate, consistent with a two-step ping-pong mechanism. Enzyme autoacylation and acyltransfer to substrate displayed the same acyl-CoA specificities, further supporting a two-step mechanism. Interestingly, DHHC2 efficiently transferred acyl chains 14 carbons and longer, whereas DHHC3 activity was greatly reduced by acyl-CoAs with chain lengths longer than 16 carbons. The rate and extent of autoacylation of DHHC3, as well as the rate of acyl chain transfer to protein substrate, were reduced with stearoyl-CoA when compared with palmitoyl-CoA. This is the first observation of lipid substrate specificity among DHHC proteins and may account for the differential S-acylation of proteins observed in cells. << Less
J Biol Chem 287:7236-7245(2012) [PubMed] [EuropePMC]
This publication is cited by 4 other entries.