Reaction participants Show >> << Hide
- Name help_outline (2R)-ethylmalonyl-CoA Identifier CHEBI:85316 Charge -5 Formula C26H37N7O19P3S InChIKeyhelp_outline VUGZQVCBBBEZQE-XGVFZYDCSA-I SMILEShelp_outline CC[C@H](C([O-])=O)C(=O)SCCNC(=O)CCNC(=O)[C@H](O)C(C)(C)COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 4 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline (2S)-ethylmalonyl-CoA Identifier CHEBI:60909 Charge -5 Formula C26H37N7O19P3S InChIKeyhelp_outline VUGZQVCBBBEZQE-UQCJFRAESA-I SMILEShelp_outline CC[C@@H](C([O-])=O)C(=O)SCCNC(=O)CCNC(=O)[C@H](O)C(C)(C)COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 4 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:59728 | RHEA:59729 | RHEA:59730 | RHEA:59731 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
Novel B(12)-dependent acyl-CoA mutases and their biotechnological potential.
Cracan V., Banerjee R.
The recent spate of discoveries of novel acyl-CoA mutases has engendered a growing appreciation for the diversity of 5'-deoxyadenosylcobalamin-dependent rearrangement reactions. The prototype of the reaction catalyzed by these enzymes is the 1,2 interchange of a hydrogen atom with a thioester grou ... >> More
The recent spate of discoveries of novel acyl-CoA mutases has engendered a growing appreciation for the diversity of 5'-deoxyadenosylcobalamin-dependent rearrangement reactions. The prototype of the reaction catalyzed by these enzymes is the 1,2 interchange of a hydrogen atom with a thioester group leading to a change in the degree of carbon skeleton branching. These enzymes are predicted to share common architectural elements: a Rossman fold and a triose phosphate isomerase (TIM)-barrel domain for binding cofactor and substrate, respectively. Within this family, methylmalonyl-CoA mutase (MCM) is the best studied and is the only member found in organisms ranging from bacteria to man. MCM interconverts (2R)-methylmalonyl-CoA and succinyl-CoA. The more recently discovered family members include isobutyryl-CoA mutase (ICM), which interconverts isobutyryl-CoA and n-butyryl-CoA; ethylmalonyl-CoA mutase, which interconverts (2R)-ethylmalonyl-CoA and (2S)-methylsuccinyl-CoA; and 2-hydroxyisobutyryl-CoA mutase, which interconverts 2-hydroxyisobutyryl-CoA and (3S)-hydroxybutyryl-CoA. A variant in which the two subunits of ICM are fused to a G-protein chaperone, IcmF, has been described recently. In addition to its ICM activity, IcmF also catalyzes the interconversion of isovaleryl-CoA and pivalyl-CoA. This review focuses on the involvement of acyl-CoA mutases in central carbon and secondary bacterial metabolism and on their biotechnological potential for applications ranging from bioremediation to stereospecific synthesis of C2-C5 carboxylic acids and alcohols, and for production of potential commodity and specialty chemicals. << Less
-
Ethylmalonyl-CoA mutase from Rhodobacter sphaeroides defines a new subclade of coenzyme B12-dependent acyl-CoA mutases.
Erb T.J., Retey J., Fuchs G., Alber B.E.
Coenzyme B(12)-dependent mutases are radical enzymes that catalyze reversible carbon skeleton rearrangement reactions. Here we describe Rhodobacter sphaeroides ethylmalonyl-CoA mutase (Ecm), a novel member of the family of coenzyme B(12)-dependent acyl-CoA mutases, that operates in the recently di ... >> More
Coenzyme B(12)-dependent mutases are radical enzymes that catalyze reversible carbon skeleton rearrangement reactions. Here we describe Rhodobacter sphaeroides ethylmalonyl-CoA mutase (Ecm), a novel member of the family of coenzyme B(12)-dependent acyl-CoA mutases, that operates in the recently discovered ethylmalonyl-CoA pathway for acetate assimilation. Ecm is involved in the central reaction sequence of this novel pathway and catalyzes the transformation of ethylmalonyl-CoA to methylsuccinyl-CoA in combination with a second enzyme that was further identified as promiscuous ethylmalonyl-CoA/methylmalonyl-CoA epimerase. In contrast to the epimerase, Ecm is highly specific for its substrate, ethylmalonyl-CoA, and accepts methylmalonyl-CoA only at 0.2% relative activity. Sequence analysis revealed that Ecm is distinct from (2R)-methylmalonyl-CoA mutase as well as isobutyryl-CoA mutase and defines a new subfamily of coenzyme B(12)-dependent acyl-CoA mutases. In combination with molecular modeling, two signature sequences were identified that presumably contribute to the substrate specificity of these enzymes. << Less
J. Biol. Chem. 283:32283-32293(2008) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.