Enzymes
UniProtKB help_outline | 281 proteins |
Reaction participants Show >> << Hide
- Name help_outline benzylamine Identifier CHEBI:225238 (Beilstein: 12297043) help_outline Charge 1 Formula C7H10N InChIKeyhelp_outline WGQKYBSKWIADBV-UHFFFAOYSA-O SMILEShelp_outline [NH3+]Cc1ccccc1 2D coordinates Mol file for the small molecule Search links Involved in 4 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (Beilstein: 3587155; CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,204 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline O2 Identifier CHEBI:15379 (CAS: 7782-44-7) help_outline Charge 0 Formula O2 InChIKeyhelp_outline MYMOFIZGZYHOMD-UHFFFAOYSA-N SMILEShelp_outline O=O 2D coordinates Mol file for the small molecule Search links Involved in 2,709 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline benzaldehyde Identifier CHEBI:17169 (CAS: 100-52-7) help_outline Charge 0 Formula C7H6O InChIKeyhelp_outline HUMNYLRZRPPJDN-UHFFFAOYSA-N SMILEShelp_outline O=Cc1ccccc1 2D coordinates Mol file for the small molecule Search links Involved in 15 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O2 Identifier CHEBI:16240 (Beilstein: 3587191; CAS: 7722-84-1) help_outline Charge 0 Formula H2O2 InChIKeyhelp_outline MHAJPDPJQMAIIY-UHFFFAOYSA-N SMILEShelp_outline [H]OO[H] 2D coordinates Mol file for the small molecule Search links Involved in 449 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NH4+ Identifier CHEBI:28938 (CAS: 14798-03-9) help_outline Charge 1 Formula H4N InChIKeyhelp_outline QGZKDVFQNNGYKY-UHFFFAOYSA-O SMILEShelp_outline [H][N+]([H])([H])[H] 2D coordinates Mol file for the small molecule Search links Involved in 528 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:59424 | RHEA:59425 | RHEA:59426 | RHEA:59427 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
MetaCyc help_outline | ||||
Reactome help_outline |
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Implication for functions of the ectopic adipocyte copper amine oxidase (AOC3) from purified enzyme and cell-based kinetic studies.
Shen S.H., Wertz D.L., Klinman J.P.
AOC3 is highly expressed in adipocytes and smooth muscle cells, but its function in these cells is currently unknown. The in vivo substrate(s) of AOC3 is/are also unknown, but could provide an invaluable clue to the enzyme's function. Expression of untagged, soluble human AOC3 in insect cells prov ... >> More
AOC3 is highly expressed in adipocytes and smooth muscle cells, but its function in these cells is currently unknown. The in vivo substrate(s) of AOC3 is/are also unknown, but could provide an invaluable clue to the enzyme's function. Expression of untagged, soluble human AOC3 in insect cells provides a relatively simple means of obtaining pure enzyme. Characterization of enzyme indicates a 6% titer for the active site 2,4,5-trihydroxyphenylalanine quinone (TPQ) cofactor and corrected k(cat) values as high as 7 s(-1). Substrate kinetic profiling shows that the enzyme accepts a variety of primary amines with different chemical features, including nonphysiological branched-chain and aliphatic amines, with measured k(cat)/K(m) values between 10(2) and 10(4) M(-1) s(-1). K(m)(O(2)) approximates the partial pressure of oxygen found in the interstitial space. Comparison of the properties of purified murine to human enzyme indicates k(cat)/K(m) values that are within 3 to 4-fold, with the exception of methylamine and aminoacetone that are ca. 10-fold more active with human AOC3. With drug development efforts investigating AOC3 as an anti-inflammatory target, these studies suggest that caution is called for when screening the efficacy of inhibitors designed against human enzymes in non-transgenic mouse models. Differentiated murine 3T3-L1 adipocytes show a uniform distribution of AOC3 on the cell surface and whole cell K(m) values that are reasonably close to values measured using purified enzymes. The latter studies support a relevance of the kinetic parameters measured with isolated AOC3 variants to adipocyte function. From our studies, a number of possible substrates with relatively high k(cat)/K(m) have been discovered, including dopamine and cysteamine, which may implicate a role for adipocyte AOC3 in insulin-signaling and fatty acid metabolism, respectively. Finally, the demonstrated AOC3 turnover of primary amines that are non-native to human tissue suggests possible roles for the adipocyte enzyme in subcutaneous bacterial infiltration and obesity. << Less
PLoS One 7:e29270-e29270(2012) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Substrate-specific enhancement of the oxidative half-reaction of monoamine oxidase.
Tan A.K., Ramsay R.R.
Monoamine oxidases A and B have identical flavin sites but different, although overlapping, amine substrate specificity. Reoxidation of ternary complexes containing substrate is much faster than of free enzyme, and the enhancement is greater in the A form than the B form. The oxidative half-reacti ... >> More
Monoamine oxidases A and B have identical flavin sites but different, although overlapping, amine substrate specificity. Reoxidation of ternary complexes containing substrate is much faster than of free enzyme, and the enhancement is greater in the A form than the B form. The oxidative half-reaction was studied with a variety of substrates to elucidate the specificity of the effect and to probe the different influences of substrate on the flavin reoxidation in the two forms of the enzyme. The second-order rate constant for the reoxidation was highest with monoamine oxidase A when kynuramine was the ligand (508 x 10(3) M-1 s-1) compared to 4 x 10(3) M-1 s-1 in its absence. MPTP (166 x 10(3) M-1 s-1) also enhanced reoxidation well, but indole substrates stimulated only poorly (e.g., tryptamine, 29 x 10(3) M-1 s-1; serotonin, 50 x 10(3) M-1 s-1). For the A form, the reduction of the flavin was rate-limiting in all cases. For the B form, reoxidation was rate-limiting for beta-phenylethylamine and contributed to the determination of the overall rate with several substrates. The ratio of the enhanced rate of oxidation to the rate of reduction correlated with the redox state of the enzyme in turnover experiments. All the observations are consistent with alternate paths of reoxidation, via either free enzyme or a reduced enzyme-substrate complex. The flux through each path is determined by the relative dissociation constants and rate constants. << Less
Biochemistry 32:2137-2143(1993) [PubMed] [EuropePMC]
This publication is cited by 5 other entries.
-
Identification of two imidazole binding sites and key residues for substrate specificity in human primary amine oxidase AOC3.
Elovaara H., Kidron H., Parkash V., Nymalm Y., Bligt E., Ollikka P., Smith D.J., Pihlavisto M., Salmi M., Jalkanen S., Salminen T.A.
Human membrane primary amine oxidase (hAOC3; also known as vascular adhesion protein-1, VAP-1) is expressed upon inflammation in most tissues, where its enzymatic activity plays a crucial role in leukocyte trafficking. We have determined two new structures of a soluble, proteolytically cleaved for ... >> More
Human membrane primary amine oxidase (hAOC3; also known as vascular adhesion protein-1, VAP-1) is expressed upon inflammation in most tissues, where its enzymatic activity plays a crucial role in leukocyte trafficking. We have determined two new structures of a soluble, proteolytically cleaved form of hAOC3 (sAOC3), which was extracted from human plasma. In the 2.6 Å sAOC3 structure, an imidazole molecule is hydrogen bonded to the topaquinone (TPQ) cofactor, which is in an inactive on-copper conformation, while in the 2.95 Å structure, an imidazole molecule is covalently bound to the active off-copper conformation of TPQ. A second imidazole bound by Tyr394 and Thr212 was identified in the substrate channel. We furthermore demonstrated that imidazole has an inhibitory role at high concentrations used in crystallization. A triple mutant (Met211Val/Tyr394Asn/Leu469Gly) of hAOC3 was previously reported to change substrate preferences toward those of hAOC2, another human copper-containing monoamine oxidase. We now mutated these three residues and Thr212 individually to study their distinct role in the substrate specificity of hAOC3. Using enzyme activity assays, the effect of the four single mutations was tested with four different substrates (methylamine, benzylamine, 2-phenylethylamine, and p-tyramine), and their binding modes were predicted by docking studies. As a result, Met211 and Leu469 were shown to be key residues for substrate specificity. The native structures of sAOC3 and the mutational data presented in this study will aid the design of hAOC3 specific inhibitors. << Less
Biochemistry 50:5507-5520(2011) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
The unique substrate specificity of human AOC2, a semicarbazide-sensitive amine oxidase.
Kaitaniemi S., Elovaara H., Groen K., Kidron H., Liukkonen J., Salminen T., Salmi M., Jalkanen S., Elima K.
Semicarbazide-sensitive amine oxidases (SSAOs) catalyze oxidative deamination of primary amines, but the true physiological function of these enzymes is still poorly understood. Here, we have studied the functional and structural characteristics of a human cell-surface SSAO, AOC2, which is homolog ... >> More
Semicarbazide-sensitive amine oxidases (SSAOs) catalyze oxidative deamination of primary amines, but the true physiological function of these enzymes is still poorly understood. Here, we have studied the functional and structural characteristics of a human cell-surface SSAO, AOC2, which is homologous to the better characterized family member, AOC3. The preferred in vitro substrates of AOC2 were found to be 2-phenylethylamine, tryptamine and p-tyramine instead of methylamine and benzylamine, the favored substrates of AOC3. Molecular modeling suggested structural differences between AOC2 and AOC3, which provide AOC2 with the capability to use the larger monoamines as substrates. Even though AOC2 mRNA was expressed in many tissues, the only tissues with detectable AOC2-like enzyme activity were found in the eye. Characterization of AOC2 will help in evaluating the contribution of this enzyme to the pathological processes attributed to the SSAO activity and in designing specific inhibitors for the individual members of the SSAO family. << Less
Cell. Mol. Life Sci. 66:2743-2757(2009) [PubMed] [EuropePMC]
This publication is cited by 4 other entries.