Reaction participants Show >> << Hide
- Name help_outline ATP Identifier CHEBI:30616 (Beilstein: 3581767) help_outline Charge -4 Formula C10H12N5O13P3 InChIKeyhelp_outline ZKHQWZAMYRWXGA-KQYNXXCUSA-J SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,280 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline docosanoate Identifier CHEBI:23858 Charge -1 Formula C22H43O2 InChIKeyhelp_outline UKMSUNONTOPOIO-UHFFFAOYSA-M SMILEShelp_outline CCCCCCCCCCCCCCCCCCCCCC([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 12 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
holo-[(phenol)carboxyphthiodiolenone synthase]
Identifier
RHEA-COMP:14271
Reactive part
help_outline
- Name help_outline O-(pantetheine-4ʼ-phosphoryl)-L-serine residue Identifier CHEBI:64479 Charge -1 Formula C14H25N3O8PS SMILEShelp_outline C(NC(CCNC(=O)[C@@H](C(COP(OC[C@@H](C(*)=O)N*)(=O)[O-])(C)C)O)=O)CS 2D coordinates Mol file for the small molecule Search links Involved in 190 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline AMP Identifier CHEBI:456215 Charge -2 Formula C10H12N5O7P InChIKeyhelp_outline UDMBCSSLTHHNCD-KQYNXXCUSA-L SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 508 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline diphosphate Identifier CHEBI:33019 (Beilstein: 185088) help_outline Charge -3 Formula HO7P2 InChIKeyhelp_outline XPPKVPWEQAFLFU-UHFFFAOYSA-K SMILEShelp_outline OP([O-])(=O)OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 1,129 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
docosanoyl-[(phenol)carboxyphthiodiolenone synthase]
Identifier
RHEA-COMP:14987
Reactive part
help_outline
- Name help_outline O-(S-docosanoylpantetheine-4ʼ-phosphoryl)-L-serine residue Identifier CHEBI:142238 Charge -1 Formula C36H67N3O9PS SMILEShelp_outline C(NC(CCNC(=O)[C@@H](C(COP(OC[C@@H](C(*)=O)N*)(=O)[O-])(C)C)O)=O)CSC(CCCCCCCCCCCCCCCCCCCCC)=O 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:59160 | RHEA:59161 | RHEA:59162 | RHEA:59163 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
MetaCyc help_outline |
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Biosynthesis of cell envelope-associated phenolic glycolipids in Mycobacterium marinum.
Vergnolle O., Chavadi S.S., Edupuganti U.R., Mohandas P., Chan C., Zeng J., Kopylov M., Angelo N.G., Warren J.D., Soll C.E., Quadri L.E.
Phenolic glycolipids (PGLs) are polyketide synthase-derived glycolipids unique to pathogenic mycobacteria. PGLs are found in several clinically relevant species, including various Mycobacterium tuberculosis strains, Mycobacterium leprae, and several nontuberculous mycobacterial pathogens, such as ... >> More
Phenolic glycolipids (PGLs) are polyketide synthase-derived glycolipids unique to pathogenic mycobacteria. PGLs are found in several clinically relevant species, including various Mycobacterium tuberculosis strains, Mycobacterium leprae, and several nontuberculous mycobacterial pathogens, such as M. marinum. Multiple lines of investigation implicate PGLs in virulence, thus underscoring the relevance of a deep understanding of PGL biosynthesis. We report mutational and biochemical studies that interrogate the mechanism by which PGL biosynthetic intermediates (p-hydroxyphenylalkanoates) synthesized by the iterative polyketide synthase Pks15/1 are transferred to the noniterative polyketide synthase PpsA for acyl chain extension in M. marinum. Our findings support a model in which the transfer of the intermediates is dependent on a p-hydroxyphenylalkanoyl-AMP ligase (FadD29) acting as an intermediary between the iterative and the noniterative synthase systems. Our results also establish the p-hydroxyphenylalkanoate extension ability of PpsA, the first-acting enzyme of a multisubunit noniterative polyketide synthase system. Notably, this noniterative system is also loaded with fatty acids by a specific fatty acyl-AMP ligase (FadD26) for biosynthesis of phthiocerol dimycocerosates (PDIMs), which are nonglycosylated lipids structurally related to PGLs. To our knowledge, the partially overlapping PGL and PDIM biosynthetic pathways provide the first example of two distinct, pathway-dedicated acyl-AMP ligases loading the same type I polyketide synthase system with two alternate starter units to produce two structurally different families of metabolites. The studies reported here advance our understanding of the biosynthesis of an important group of mycobacterial glycolipids. << Less
J. Bacteriol. 197:1040-1050(2015) [PubMed] [EuropePMC]
This publication is cited by 19 other entries.
-
Delineation of the roles of FadD22, FadD26 and FadD29 in the biosynthesis of phthiocerol dimycocerosates and related compounds in Mycobacterium tuberculosis.
Simeone R., Leger M., Constant P., Malaga W., Marrakchi H., Daffe M., Guilhot C., Chalut C.
Phthiocerol and phthiodiolone dimycocerosates (DIMs) and phenolic glycolipids (PGLs) are complex lipids located at the cell surface of Mycobacterium tuberculosis that play a key role in the pathogenicity of tuberculosis. Most of the genes involved in the biosynthesis of these compounds are cluster ... >> More
Phthiocerol and phthiodiolone dimycocerosates (DIMs) and phenolic glycolipids (PGLs) are complex lipids located at the cell surface of Mycobacterium tuberculosis that play a key role in the pathogenicity of tuberculosis. Most of the genes involved in the biosynthesis of these compounds are clustered on a region of the M. tuberculosis chromosome, the so-called DIM + PGL locus. Among these genes, four ORFs encode FadD proteins, which activate and transfer biosynthetic intermediates onto various polyketide synthases that catalyze the formation of these lipids. In this study, we investigated the roles of FadD22, FadD26 and FadD29 in the biosynthesis of DIMs and related compounds. Biochemical characterization of the lipids produced by a spontaneous Mycobacterium bovis BCG mutant harboring a large deletion within fadD26 revealed that FadD26 is required for the production of DIMs but not of PGLs. Additionally, using allelic exchange recombination, we generated an unmarked M. tuberculosis mutant containing a deletion within fadD29. Biochemical analyses of this strain revealed that, like fadD22, this gene encodes a protein that is specifically involved in the biosynthesis of PGLs, indicating that both FadD22 and FadD29 are responsible for one particular reaction in the PGL biosynthetic pathway. These findings were also supported by in vitro enzymatic studies showing that these enzymes have different properties, FadD22 displaying a p-hydroxybenzoyl-AMP ligase activity, and FadD29 a fatty acyl-AMP ligase activity. Altogether, these data allowed us to precisely define the functions fulfilled by the various FadD proteins encoded by the DIM + PGL cluster. << Less
FEBS J. 277:2715-2725(2010) [PubMed] [EuropePMC]
This publication is cited by 19 other entries.
-
Gene knockout reveals a novel gene cluster for the synthesis of a class of cell wall lipids unique to pathogenic mycobacteria.
Azad A.K., Sirakova T.D., Fernandes N.D., Kolattukudy P.E.
Surface-exposed unusual lipids containing phthiocerol and phenolphthiocerol are found only in the cell wall of slow-growing pathogenic mycobacteria and are thought to play important roles in host-pathogen interaction. The enzymology and molecular genetics of biosynthesis of phthiocerol and phenolp ... >> More
Surface-exposed unusual lipids containing phthiocerol and phenolphthiocerol are found only in the cell wall of slow-growing pathogenic mycobacteria and are thought to play important roles in host-pathogen interaction. The enzymology and molecular genetics of biosynthesis of phthiocerol and phenolphthiocerol are unknown. We postulate the domain organization of a set of multifunctional enzymes and a cluster of genes (pps) that would encode these enzymes for the biosynthesis of phthiocerol and phenolphthiocerol. A cosmid containing the postulated pps gene cluster was identified by screening a genomic library of Mycobacterium bovis BCG with the postulated homologous domains from mycocerosic acid synthase and fatty acid synthase genes as probes. Homologous cosmids were also identified in the genomic libraries of Mycobacterium tuberculosis and Mycobacterium leprae. M. bovis BCG was transformed with a pps disruption construct, made from the BCG cosmid by introducing the hygromycin resistance gene as the positive-selectable marker and the sacB gene as the counter-selectable marker. Gene disruption by homologous recombination with double crossover was confirmed by polymerase chain reaction and Southern hybridization. Chromatographic analysis showed that the phenolphthiocerol derivative, mycoside B, and phthiocerol dimycocerosates were not produced by the gene knockout mutants. This result confirms the identity of the pps genes. With the identification of the pps gene clusters in both M. tuberculosis and M. leprae, it should be possible to test the postulated roles of these unique lipids in tuberculosis and leprosy. << Less
J. Biol. Chem. 272:16741-16745(1997) [PubMed] [EuropePMC]
This publication is cited by 7 other entries.
Comments
Multi-step reaction: RHEA:59200 and RHEA:59204