Enzymes
UniProtKB help_outline | 1 proteins |
Reaction participants Show >> << Hide
- Name help_outline (S)-2,3-diaminopropanoate Identifier CHEBI:57721 Charge 0 Formula C3H8N2O2 InChIKeyhelp_outline PECYZEOJVXMISF-REOHCLBHSA-N SMILEShelp_outline N[C@@H](C[NH3+])C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 6 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline citrate Identifier CHEBI:16947 (CAS: 126-44-3) help_outline Charge -3 Formula C6H5O7 InChIKeyhelp_outline KRKNYBCHXYNGOX-UHFFFAOYSA-K SMILEShelp_outline OC(CC([O-])=O)(CC([O-])=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 31 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline ATP Identifier CHEBI:30616 (Beilstein: 3581767) help_outline Charge -4 Formula C10H12N5O13P3 InChIKeyhelp_outline ZKHQWZAMYRWXGA-KQYNXXCUSA-J SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,284 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 2-[(L-alanin-3-ylcarbamoyl)methyl]-2-hydroxybutanedioate Identifier CHEBI:142969 Charge -2 Formula C9H12N2O8 InChIKeyhelp_outline RACKNMPLNJKJHK-IGJIYHIXSA-L SMILEShelp_outline O=C(NC[C@H]([NH3+])C(=O)[O-])C[C@](CC(=O)[O-])(C([O-])=O)O 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline AMP Identifier CHEBI:456215 Charge -2 Formula C10H12N5O7P InChIKeyhelp_outline UDMBCSSLTHHNCD-KQYNXXCUSA-L SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 512 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline diphosphate Identifier CHEBI:33019 (Beilstein: 185088) help_outline Charge -3 Formula HO7P2 InChIKeyhelp_outline XPPKVPWEQAFLFU-UHFFFAOYSA-K SMILEShelp_outline OP([O-])(=O)OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 1,139 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:59124 | RHEA:59125 | RHEA:59126 | RHEA:59127 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
MetaCyc help_outline |
Publications
-
Molecular characterization of staphyloferrin B biosynthesis in Staphylococcus aureus.
Cheung J., Beasley F.C., Liu S., Lajoie G.A., Heinrichs D.E.
Siderophores are iron-scavenging molecules produced by many microbes. In general, they are synthesized using either non-ribosomal peptide synthetase (NRPS) or NRPS-independent siderophore (NIS) pathways. Staphylococcus aureus produces siderophores, of which the structures of staphyloferrin A and s ... >> More
Siderophores are iron-scavenging molecules produced by many microbes. In general, they are synthesized using either non-ribosomal peptide synthetase (NRPS) or NRPS-independent siderophore (NIS) pathways. Staphylococcus aureus produces siderophores, of which the structures of staphyloferrin A and staphyloferrin B are known. Recently, the NIS biosynthetic pathway for staphyloferrin A was characterized. Here we show that, in S. aureus, the previously identified sbn (siderophore biosynthesis) locus encodes enzymes required for the synthesis of staphyloferrin B, an alpha-hydroxycarboxylate siderophore comprised of l-2,3-diaminopropionic acid, citric acid, 1,2-diaminoethane and alpha-ketoglutaric acid. Staphyloferrin B NIS biosynthesis was recapitulated in vitro, using purified recombinant Sbn enzymes and the component substrates. In vitro synthesized staphyloferrin B readily promoted the growth of iron-starved S. aureus, via the ABC transporter SirABC. The SbnCEF synthetases and a decarboxylase, SbnH, were necessary and sufficient to produce staphyloferrin B in reactions containing component substrates l-2,3-diaminopropionic acid, citric acid and alpha-ketoglutaric acid. Since 1,2-diaminoethane was not required, this component of the siderophore arises from the SbnH-dependent decarboxylation of a 2,3-diaminoproprionic acid-containing intermediate. Liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS) analyses of a series of enzyme reactions identified mass ions corresponding to biosynthetic intermediates, allowing for the first proposed biosynthetic pathway for staphyloferrin B. << Less
Mol. Microbiol. 74:594-608(2009) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.
-
Role of siderophore biosynthesis in virulence of Staphylococcus aureus: identification and characterization of genes involved in production of a siderophore.
Dale S.E., Doherty-Kirby A., Lajoie G., Heinrichs D.E.
Molecular determinants underlying the production of siderophores in the human and animal pathogen Staphylococcus aureus and the contribution of siderophore production to the virulence of this bacterium have, until now, remained undefined. Here, we show that S. aureus strains RN6390 and Newman prod ... >> More
Molecular determinants underlying the production of siderophores in the human and animal pathogen Staphylococcus aureus and the contribution of siderophore production to the virulence of this bacterium have, until now, remained undefined. Here, we show that S. aureus strains RN6390 and Newman produce siderophore when the cells are starved for iron. We further identified and characterized a nine-gene, iron-regulated operon, designated sbn and situated between sirABC and galE on the S. aureus chromosome, that is involved in the production of a siderophore. Mutation of the sbnE gene, in both RN6390 and Newman, eliminates the ability of these strains to produce a siderophore under iron-limited growth conditions, while introduction of multicopy sbnE into sbnE mutants complemented the inability of the mutants to produce the siderophore. sbnE mutants, in both the RN6390 and Newman backgrounds, displayed a drastic growth deficiency, compared to the wild type, in iron-restricted growth medium, whereas no such deficiency was observed during growth in iron-replete medium. Complemented mutants showed a restored ability to grow under iron restriction. We further showed that an sbnE mutant was compromised in a murine kidney abscess model of S. aureus infection, illustrating the importance of siderophore production to the pathogenicity of S. aureus. sbn genes were present in all S. aureus strains tested (and all S. aureus genome sequences) but were undetectable in any of the 13 coagulase-negative staphylococci tested, including Staphylococcus epidermidis. << Less