Enzymes
UniProtKB help_outline | 2 proteins |
Enzyme class help_outline |
|
GO Molecular Function help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline 4α-carboxy-4β,14α-dimethyl-9β,19-cyclo-5α-ergost-24(241)-en-3β-ol Identifier CHEBI:142916 Charge -1 Formula C31H49O3 InChIKeyhelp_outline RLRGKMMFFVWPHT-NUYPAGBLSA-M SMILEShelp_outline [C@]123[C@@]4([C@]([C@]([C@@H](O)CC4)(C)C(=O)[O-])(CC[C@]1([C@]5([C@@]([C@@]([C@@H](CCC(C(C)C)=C)C)(CC5)[H])(CC2)C)C)[H])[H])C3 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NAD+ Identifier CHEBI:57540 (Beilstein: 3868403) help_outline Charge -1 Formula C21H26N7O14P2 InChIKeyhelp_outline BAWFJGJZGIEFAR-NNYOXOHSSA-M SMILEShelp_outline NC(=O)c1ccc[n+](c1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,186 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CO2 Identifier CHEBI:16526 (Beilstein: 1900390; CAS: 124-38-9) help_outline Charge 0 Formula CO2 InChIKeyhelp_outline CURLTUGMZLYLDI-UHFFFAOYSA-N SMILEShelp_outline O=C=O 2D coordinates Mol file for the small molecule Search links Involved in 997 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline cycloeucalenone Identifier CHEBI:142915 (CAS: 1255-12-5) help_outline Charge 0 Formula C30H48O InChIKeyhelp_outline NFRXSIOHGADFRG-MEMZBLDGSA-N SMILEShelp_outline [C@]123CCC(=O)[C@@H](C)[C@]1([H])CC[C@]4([H])[C@@]2(C3)CC[C@@]5([C@](CC[C@@]45C)([C@@H](CCC(C(C)C)=C)C)[H])C 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADH Identifier CHEBI:57945 (Beilstein: 3869564) help_outline Charge -2 Formula C21H27N7O14P2 InChIKeyhelp_outline BOPGDPNILDQYTO-NNYOXOHSSA-L SMILEShelp_outline NC(=O)C1=CN(C=CC1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,116 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:59016 | RHEA:59017 | RHEA:59018 | RHEA:59019 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
MetaCyc help_outline |
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Homology modeling and site-directed mutagenesis reveal catalytic key amino acids of 3beta-hydroxysteroid-dehydrogenase/C4-decarboxylase from Arabidopsis.
Rahier A., Bergdoll M., Genot G., Bouvier F., Camara B.
Sterols become functional only after removal of the two methyl groups at C4 by a membrane-bound multienzyme complex including a 3beta-hydroxysteroid-dehydrogenase/C4-decarboxylase (3betaHSD/D). We recently identified Arabidopsis (Arabidopsis thaliana) 3betaHSD/D as a bifunctional short-chain dehyd ... >> More
Sterols become functional only after removal of the two methyl groups at C4 by a membrane-bound multienzyme complex including a 3beta-hydroxysteroid-dehydrogenase/C4-decarboxylase (3betaHSD/D). We recently identified Arabidopsis (Arabidopsis thaliana) 3betaHSD/D as a bifunctional short-chain dehydrogenase/reductase protein. We made use of three-dimensional homology modeling to identify key amino acids involved in 4alpha-carboxy-sterol and NAD binding and catalysis. Key amino acids were subjected to site-directed mutagenesis, and the mutated enzymes were expressed and assayed both in vivo and in vitro in an erg26 yeast strain defective in 3betaHSD/D. We show that tyrosine-159 and lysine-163, which are oriented near the 3beta-hydroxyl group of the substrate in the model, are essential for the 3betaHSD/D activity, consistent with their involvement in the initial dehydrogenation step of the reaction. The essential arginine-326 residue is predicted to form a salt bridge with the 4alpha-carboxyl group of the substrate, suggesting its involvement both in substrate binding and in the decarboxylation step. The essential aspartic acid-39 residue is in close contact with the hydroxyl groups of the adenosine-ribose ring of NAD+, in good agreement with the strong preference of 3betaHSD/D for NAD+. Data obtained with serine-133 mutants suggest close proximity between the serine-133 residue and the C4beta domain of the bound sterol. Based on these data, we propose a tentative mechanism for 3betaHSD/D activity. This study provides, to our knowledge, the first data on the three-dimensional molecular interactions of an enzyme of the postoxidosqualene cyclase sterol biosynthesis pathway with its substrate. The implications of our findings for studying the roles of C4-alkylated sterol precursors in plant development are discussed. << Less
-
Molecular and enzymatic characterizations of novel bifunctional 3beta-hydroxysteroid dehydrogenases/C-4 decarboxylases from Arabidopsis thaliana.
Rahier A., Darnet S., Bouvier F., Camara B., Bard M.
We have isolated two cDNAs from Arabidopsis thaliana encoding bifunctional 3beta-hydroxysteroid dehydrogenase/C-4 decarboxylases (3betaHSD/D) involved in sterol synthesis, termed At3betaHSD/D1 and At3betaHSD/D2. Transformation of the yeast ergosterol auxotroph erg26 mutant, which lacks 3betaHSD/D ... >> More
We have isolated two cDNAs from Arabidopsis thaliana encoding bifunctional 3beta-hydroxysteroid dehydrogenase/C-4 decarboxylases (3betaHSD/D) involved in sterol synthesis, termed At3betaHSD/D1 and At3betaHSD/D2. Transformation of the yeast ergosterol auxotroph erg26 mutant, which lacks 3betaHSD/D activity, with the At3betaHSD/D1 isoform or with At3betaHSD/D2 isoform containing a C-terminal At3betaHSD/D1 endoplasmic reticulum-retrieval sequence restored growth and ergosterol synthesis in erg26. An in vitro enzymatic assay revealed high 3betaHSD/D activity for both isoenzymes in the corresponding microsomal extracts. The two At3betaHSD/D isoenzymes showed similar substrate specificities that required free 3beta-hydroxyl and C-4-carboxyl groups but were quite tolerant in terms of variations of the sterol nucleus and side chain structures. Data obtained with 4alpha-carboxy-cholest-7-en-3beta-ol and its 3alpha-deuterated analog revealed that 3alpha-hydrogen-carbon bond cleavage is not the rate-limiting step of the reaction. In planta reduction on the expression of the 3betaHSD/D gene as a consequence of VIGS-mediated gene silencing in Nicotiana benthamiana led to a substantial accumulation of 3beta-hydroxy-4beta,14-dimethyl-5alpha-ergosta-9beta,19-cyclo-24(24(1))-en-4alpha-carboxylic acid, consistent with a decrease in 3betaHSD/D activity. These two novel oxidative decarboxylases constitute the first molecularly and functionally characterized HSDs from a short chain dehydrogenase/reductase family in plants. << Less