Enzymes
UniProtKB help_outline | 169 proteins |
Enzyme class help_outline |
|
Reaction participants Show >> << Hide
-
Namehelp_outline
hexadecanoyl-[(hydroxy)phthioceranic acid synthase]
Identifier
RHEA-COMP:15244
Reactive part
help_outline
- Name help_outline O-(S-hexadecanoylpantetheine-4ʼ-phosphoryl)-L-serine residue Identifier CHEBI:78483 Charge -1 Formula C30H55N3O9PS SMILEShelp_outline CCCCCCCCCCCCCCCC(=O)SCCNC(=O)CCNC(=O)[C@H](O)C(C)(C)COP([O-])(=O)OC[C@H](N-*)C(-*)=O 2D coordinates Mol file for the small molecule Search links Involved in 18 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline (S)-methylmalonyl-CoA Identifier CHEBI:57327 Charge -5 Formula C25H35N7O19P3S InChIKeyhelp_outline MZFOKIKEPGUZEN-IBNUZSNCSA-I SMILEShelp_outline C[C@@H](C([O-])=O)C(=O)SCCNC(=O)CCNC(=O)[C@H](O)C(C)(C)COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 20 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADPH Identifier CHEBI:57783 (Beilstein: 10411862) help_outline Charge -4 Formula C21H26N7O17P3 InChIKeyhelp_outline ACFIXJIJDZMPPO-NNYOXOHSSA-J SMILEShelp_outline NC(=O)C1=CN(C=CC1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](OP([O-])([O-])=O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,288 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
C37-phthioceranyl-[(hydroxy)phthioceranic acid synthase]
Identifier
RHEA-COMP:15246
Reactive part
help_outline
- Name help_outline O-(S-C37-phthioceranylpantetheine-4ʼ-phosphoryl)-L-serine residue Identifier CHEBI:142473 Charge -1 Formula C51H97N3O9PS SMILEShelp_outline C(NC(CCNC(=O)[C@@H](C(COP(OC[C@@H](C(*)=O)N*)(=O)[O-])(C)C)O)=O)CSC([C@H](C[C@H](C[C@H](C[C@H](C[C@H](C[C@H](C[C@H](CCCCCCCCCCCCCCCC)C)C)C)C)C)C)C)=O 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CO2 Identifier CHEBI:16526 (CAS: 124-38-9) help_outline Charge 0 Formula CO2 InChIKeyhelp_outline CURLTUGMZLYLDI-UHFFFAOYSA-N SMILEShelp_outline O=C=O 2D coordinates Mol file for the small molecule Search links Involved in 1,006 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADP+ Identifier CHEBI:58349 Charge -3 Formula C21H25N7O17P3 InChIKeyhelp_outline XJLXINKUBYWONI-NNYOXOHSSA-K SMILEShelp_outline NC(=O)c1ccc[n+](c1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](OP([O-])([O-])=O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,294 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CoA Identifier CHEBI:57287 (Beilstein: 11604429) help_outline Charge -4 Formula C21H32N7O16P3S InChIKeyhelp_outline RGJOEKWQDUBAIZ-IBOSZNHHSA-J SMILEShelp_outline CC(C)(COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12)[C@@H](O)C(=O)NCCC(=O)NCCS 2D coordinates Mol file for the small molecule Search links Involved in 1,511 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,264 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:58908 | RHEA:58909 | RHEA:58910 | RHEA:58911 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
The Mycobacterium tuberculosis pks2 gene encodes the synthase for the hepta- and octamethyl-branched fatty acids required for sulfolipid synthesis.
Sirakova T.D., Thirumala A.K., Dubey V.S., Sprecher H., Kolattukudy P.E.
Multidrug-resistant tuberculosis is a major global health emergency. Cell wall lipids of Mycobacterium tuberculosis can play crucial roles in the pathogenesis. The enzymes involved in their synthesis can be ideal new drug targets against tuberculosis, because many such lipids are unique to this pa ... >> More
Multidrug-resistant tuberculosis is a major global health emergency. Cell wall lipids of Mycobacterium tuberculosis can play crucial roles in the pathogenesis. The enzymes involved in their synthesis can be ideal new drug targets against tuberculosis, because many such lipids are unique to this pathogen. A variety of multiple methyl-branched fatty acids are among such unique lipids. We have identified seven genes highly homologous to the mas gene, which is known to be involved in the production of one class of such multiple methyl-branched fatty acids. One of these mas-like genes, pks2, was disrupted using a phage-mediated delivery of the disruption construct. Gene disruption by homologous recombination was confirmed by polymerase chain reaction analysis of the flanking regions of the introduced disrupted gene and by Southern analysis. Thin-layer and radio gas-chromatographic analyses of lipids derived from [1-14C]propionic acid and gas chromatography/mass spectrometry analysis of the fatty acids and hydroxy fatty acids showed that the pks2 mutant was incapable of producing hepta- and octamethyl phthioceranic acids and hydroxyphthioceranic acids that are the major acyl constituents of sulfolipids. Consequently, pks2 mutant does not produce sulfolipids. Sulfolipid deficiency in pks2 mutant was confirmed by two-dimensional thin-layer chromatographic analysis of lipids derived from [1-14C]propionic acid and 35SO4(-2). With this sulfolipid-deficient mutant, it should be possible to test for the postulated important roles for sulfolipids in the pathogenesis of M. tuberculosis. << Less
J. Biol. Chem. 276:16833-16839(2001) [PubMed] [EuropePMC]
This publication is cited by 4 other entries.
-
Versatile polyketide enzymatic machinery for the biosynthesis of complex mycobacterial lipids.
Gokhale R.S., Saxena P., Chopra T., Mohanty D.
The cell envelope of Mycobacterium tuberculosis (Mtb) is a treasure house of a variety of biologically active molecules with fascinating architectures. The decoding of the genetic blueprint of Mtb in recent years has provided the impetus for dissecting the metabolic pathways involved in the biosyn ... >> More
The cell envelope of Mycobacterium tuberculosis (Mtb) is a treasure house of a variety of biologically active molecules with fascinating architectures. The decoding of the genetic blueprint of Mtb in recent years has provided the impetus for dissecting the metabolic pathways involved in the biosynthesis of lipidic metabolites. The focus of the Highlight is to emphasize the functional role of polyketide synthase (PKS) proteins in the biosynthesis of complex mycobacterial lipids. The catalytic as well as mechanistic versatility of PKS. in generating metabolic diversity and the significance of recently discovered fatty acyl-AMP ligases in establishing "biochemical crosstalk" between fatty acid synthases (FASs) and PKSs is described. The phenotypic heterogeneity and remodeling of the mycobacterial cell wall in its aetiopathogenesis is discussed. << Less
Nat. Prod. Rep. 24:267-277(2007) [PubMed] [EuropePMC]
This publication is cited by 7 other entries.
-
Multiple deletions in the polyketide synthase gene repertoire of Mycobacterium tuberculosis reveal functional overlap of cell envelope lipids in host-pathogen interactions.
Passemar C., Arbues A., Malaga W., Mercier I., Moreau F., Lepourry L., Neyrolles O., Guilhot C., Astarie-Dequeker C.
Several specific lipids of the cell envelope are implicated in the pathogenesis of M. tuberculosis (Mtb), including phthiocerol dimycocerosates (DIM) that have clearly been identified as virulence factors. Others, such as trehalose-derived lipids, sulfolipids (SL), diacyltrehaloses (DAT) and polya ... >> More
Several specific lipids of the cell envelope are implicated in the pathogenesis of M. tuberculosis (Mtb), including phthiocerol dimycocerosates (DIM) that have clearly been identified as virulence factors. Others, such as trehalose-derived lipids, sulfolipids (SL), diacyltrehaloses (DAT) and polyacyltrehaloses (PAT), are believed to be essential for Mtb virulence, but the details of their role remain unclear. We therefore investigated the respective contribution of DIM, DAT/PAT and SL to tuberculosis by studying a collection of mutants, each with impaired production of one or several lipids. We confirmed that among those with a single lipid deficiency, only strains lacking DIM were affected in their replication in lungs and spleen of mice in comparison to the WT Mtb strain. We found also that the additional loss of DAT/PAT, and to a lesser extent of SL, increased the attenuated phenotype of the DIM-less mutant. Importantly, the loss of DAT/PAT and SL in a DIM-less background also affected Mtb growth in human monocyte-derived macrophages (hMDMs). Fluorescence microscopy revealed that mutants lacking DIM or DAT/PAT were localized in an acid compartment and that bafilomycin A1, an inhibitor of phagosome acidification, rescued the growth defect of these mutants. These findings provide evidence for DIM being dominant virulence factors that mask the functions of lipids of other families, notably DAT/PAT and to a lesser extent of SL, which we showed for the first time to contribute to Mtb virulence. << Less
Cell. Microbiol. 16:195-213(2014) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.