Enzymes
UniProtKB help_outline | 236 proteins |
Reaction participants Show >> << Hide
- Name help_outline 3-deoxyfructose Identifier CHEBI:142685 (CAS: 6196-57-2) help_outline Charge 0 Formula C6H12O5 InChIKeyhelp_outline OXFWZSUJNURRMW-NTSWFWBYSA-N SMILEShelp_outline OC[C@H]([C@H](CC(CO)=O)O)O 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADP+ Identifier CHEBI:58349 Charge -3 Formula C21H25N7O17P3 InChIKeyhelp_outline XJLXINKUBYWONI-NNYOXOHSSA-K SMILEShelp_outline NC(=O)c1ccc[n+](c1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](OP([O-])([O-])=O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,294 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 3-deoxyglucosone Identifier CHEBI:60777 (CAS: 4084-27-9) help_outline Charge 0 Formula C6H10O5 InChIKeyhelp_outline ZGCHLOWZNKRZSN-NTSWFWBYSA-N SMILEShelp_outline [H]C(=O)C(=O)C[C@H](O)[C@H](O)CO 2D coordinates Mol file for the small molecule Search links Involved in 4 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADPH Identifier CHEBI:57783 (Beilstein: 10411862) help_outline Charge -4 Formula C21H26N7O17P3 InChIKeyhelp_outline ACFIXJIJDZMPPO-NNYOXOHSSA-J SMILEShelp_outline NC(=O)C1=CN(C=CC1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](OP([O-])([O-])=O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,288 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:58668 | RHEA:58669 | RHEA:58670 | RHEA:58671 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
Related reactions help_outline
More general form(s) of this reaction
Publications
-
In vivo role of aldehyde reductase.
Takahashi M., Miyata S., Fujii J., Inai Y., Ueyama S., Araki M., Soga T., Fujinawa R., Nishitani C., Ariki S., Shimizu T., Abe T., Ihara Y., Nishikimi M., Kozutsumi Y., Taniguchi N., Kuroki Y.
<h4>Background</h4>Aldehyde reductase (AKR1A; EC 1.1.1.2) catalyzes the reduction of various types of aldehydes. To ascertain the physiological role of AKR1A, we examined AKR1A knockout mice.<h4>Methods</h4>Ascorbic acid concentrations in AKR1A knockout mice tissues were examined, and the effects ... >> More
<h4>Background</h4>Aldehyde reductase (AKR1A; EC 1.1.1.2) catalyzes the reduction of various types of aldehydes. To ascertain the physiological role of AKR1A, we examined AKR1A knockout mice.<h4>Methods</h4>Ascorbic acid concentrations in AKR1A knockout mice tissues were examined, and the effects of human AKR1A transgene were analyzed. We purified AKR1A and studied the activities of glucuronate reductase and glucuronolactone reductase, which are involved in ascorbic acid biosynthesis. Metabolomic analysis and DNA microarray analysis were performed for a comprehensive study of AKR1A knockout mice.<h4>Results</h4>The levels of ascorbic acid in tissues of AKR1A knockout mice were significantly decreased which were completely restored by human AKR1A transgene. The activities of glucuronate reductase and glucuronolactone reductase, which are involved in ascorbic acid biosynthesis, were suppressed in AKR1A knockout mice. The accumulation of d-glucuronic acid and saccharate in knockout mice tissue and the expression of acute-phase proteins such as serum amyloid A2 are significantly increased in knockout mice liver.<h4>Conclusions</h4>AKR1A plays a predominant role in the reduction of both d-glucuronic acid and d-glucurono-γ-lactone in vivo. The knockout of AKR1A in mice results in accumulation of d-glucuronic acid and saccharate as well as a deficiency of ascorbic acid, and also leads to upregulation of acute phase proteins.<h4>General significance</h4>AKR1A is a major enzyme that catalyzes the reduction of d-glucuronic acid and d-glucurono-γ-lactone in vivo, besides acting as an aldehyde-detoxification enzyme. Suppression of AKR1A by inhibitors, which are used to prevent diabetic complications, may lead to the accumulation of d-glucuronic acid and saccharate. << Less
Biochim. Biophys. Acta 1820:1787-1796(2012) [PubMed] [EuropePMC]
This publication is cited by 6 other entries.