Enzymes
UniProtKB help_outline | 2 proteins |
Reaction participants Show >> << Hide
- Name help_outline (E)-4-hydroxynon-2-en-1-ol Identifier CHEBI:142617 Charge 0 Formula C9H18O2 InChIKeyhelp_outline ZDHRSPRSUBAAIO-FNORWQNLSA-N SMILEShelp_outline CCCCCC(/C=C/CO)O 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADP+ Identifier CHEBI:58349 Charge -3 Formula C21H25N7O17P3 InChIKeyhelp_outline XJLXINKUBYWONI-NNYOXOHSSA-K SMILEShelp_outline NC(=O)c1ccc[n+](c1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](OP([O-])([O-])=O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,285 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline (E)-4-hydroxynon-2-enal Identifier CHEBI:58968 (CAS: 18286-49-2) help_outline Charge 0 Formula C9H16O2 InChIKeyhelp_outline JVJFIQYAHPMBBX-FNORWQNLSA-N SMILEShelp_outline [H]C(=O)\C=C\C(O)CCCCC 2D coordinates Mol file for the small molecule Search links Involved in 6 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADPH Identifier CHEBI:57783 (Beilstein: 10411862) help_outline Charge -4 Formula C21H26N7O17P3 InChIKeyhelp_outline ACFIXJIJDZMPPO-NNYOXOHSSA-J SMILEShelp_outline NC(=O)C1=CN(C=CC1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](OP([O-])([O-])=O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,279 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:58416 | RHEA:58417 | RHEA:58418 | RHEA:58419 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Characterization of mouse short-chain aldehyde reductase (SCALD), an enzyme regulated by sterol regulatory element-binding proteins.
Kasus-Jacobi A., Ou J., Bashmakov Y.K., Shelton J.M., Richardson J.A., Goldstein J.L., Brown M.S.
Sterol regulatory element-binding proteins (SREBPs) enhance transcription of genes encoding all of the proteins required for the cellular synthesis and uptake of cholesterol and unsaturated fatty acids. Here, we use suppression subtractive hybridization to identify a previously unrecognized SREBP- ... >> More
Sterol regulatory element-binding proteins (SREBPs) enhance transcription of genes encoding all of the proteins required for the cellular synthesis and uptake of cholesterol and unsaturated fatty acids. Here, we use suppression subtractive hybridization to identify a previously unrecognized SREBP-enhanced gene in mice. The gene encodes a membrane-bound enzyme that we designate SCALD, for short-chain aldehyde reductase. We expressed SCALD in bacteria, purified it extensively, and studied its catalytic properties in detergent solution. The enzyme specifically uses NADPH to reduce a variety of short-chain aldehydes, including nonanal and 4-hydroxy-2-nonenal. The enzyme also reduces retinaldehydes, showing equal activity for all-trans-retinal and 9-cis-retinal. Northern blot analysis indicates that SCALD is expressed most abundantly in mouse liver and testis. In the liver of mice, SCALD is suppressed by fasting and induced by refeeding, consistent with regulation by SREBPs. In testis, SCALD expression is restricted to pachytene spermatocytes, as revealed by visualization of mRNA and protein. SCALD is also expressed in four layers of the retina, including the outer segment of rods and cones, as revealed by immunohistochemistry. SCALD appears to be the mouse ortholog of the human protein that has been designated variously as prostate short-chain dehydrogenase/reductase 1, retinal reductase 1, and retinol dehydrogenase 11. In view of its ability to reduce short-chain aldehydes in addition to retinals, we propose that SCALD may be induced by SREBP in liver and other tissues to prevent toxicity from fatty aldehydes that are generated from oxidation of unsaturated fatty acids that are synthesized as a result of SREBP activity. << Less
J. Biol. Chem. 278:32380-32389(2003) [PubMed] [EuropePMC]
This publication is cited by 11 other entries.
-
Role of human aldo-keto-reductase AKR1B10 in the protection against toxic aldehydes.
Martin H.J., Maser E.
Damage of cell membranes by reactive oxygen species results in the formation of toxic lipid peroxides which may ultimately lead to cell death. Among the best characterized intermediates of oxidative stress are the unsaturated aldehydes 4-hydroxynon-2-enal (4-HNE) and its oxidized counterpart 4-oxo ... >> More
Damage of cell membranes by reactive oxygen species results in the formation of toxic lipid peroxides which may ultimately lead to cell death. Among the best characterized intermediates of oxidative stress are the unsaturated aldehydes 4-hydroxynon-2-enal (4-HNE) and its oxidized counterpart 4-oxonon-2-enal (4-ONE). 4-HNE has been linked to various pathological conditions including atherosclerosis, Parkinson's and Alzheimer's disease. 4-Methylpentanal (4-MP) is a side-chain cleavage product formed endogenously during steroidogenesis from cholesterol. Like 4-HNE and 4-ONE, 4-MP is capable of binding covalently to and cross-linking of proteins. These aldehydes are also damaging DNA by the formation of adducts. We found that AKR1B10, a cytosolic member of the aldo-keto reductase superfamily, efficiently catalyzes the reduction of 4-HNE (K(m)=0.3mM, k(cat)=43 min(-1)), 4-ONE (K(m)=0.3mM, k(cat)=40 min(-1)) and 4-MP (K(m)=0.05 mM, k(cat)=25 min(-1)). AKR1B10 catalyzed 4-MP reduction with a 30-fold increase in activity using NADPH as cofactor compared with NADH. As was observed for aldose reductase (AKR1B1) 4-ONE rapidly inactivates AKR1B10, while this inactivation is not observed when the enzyme is pre-incubated with NADPH. It was shown that cysteine 298 of aldose reductase was protected by NADPH from the alpha,beta-unsaturated carbonyls of 4-ONE thus rendering resistance towards inactivation. We generated a mutant AKR1B10, changing the respective cysteine on position 299 of AKR1B10 into a serine. This C299S mutant is still active towards 4-HNE and 4-ONE, albeit at a somewhat lower catalytic efficiency. However, it is still inactivated by 4-ONE in the absence of NADPH.While the best substrates for AKR1B10 are retinals, the high catalytic efficiency together with the protection from inactivation by NADPH suggests a role of AKR1B10 in the detoxification of biogenic aldehydes. << Less
Chem. Biol. Interact. 178:145-150(2009) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.