Enzymes
UniProtKB help_outline | 20,905 proteins |
Enzyme class help_outline |
|
Reaction participants Show >> << Hide
-
Namehelp_outline
N6-acetyl-L-lysyl-[histone]
Identifier
RHEA-COMP:11338
Reactive part
help_outline
- Name help_outline N6-acetyl-L-lysine residue Identifier CHEBI:61930 Charge 0 Formula C8H14N2O2 SMILEShelp_outline CC(=O)NCCCC[C@H](N-*)C(-*)=O 2D coordinates Mol file for the small molecule Search links Involved in 11 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,337 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
L-lysyl-[histone]
Identifier
RHEA-COMP:9845
Reactive part
help_outline
- Name help_outline L-lysine residue Identifier CHEBI:29969 Charge 1 Formula C6H13N2O SMILEShelp_outline C([C@@H](C(*)=O)N*)CCC[NH3+] 2D coordinates Mol file for the small molecule Search links Involved in 137 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline acetate Identifier CHEBI:30089 (CAS: 71-50-1) help_outline Charge -1 Formula C2H3O2 InChIKeyhelp_outline QTBSBXVTEAMEQO-UHFFFAOYSA-M SMILEShelp_outline CC([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 180 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:58196 | RHEA:58197 | RHEA:58198 | RHEA:58199 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
MetaCyc help_outline |
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Histone deacetylase enzymes as potential drug targets in cancer and parasitic diseases.
Ouaissi M., Ouaissi A.
The elucidation of the mechanisms of transcriptional activation and repression in eukaryotic cells has shed light on the important role of acetylation-deacetylation of histones mediated by histone acetyltransferases (HATs) and histone deacetylases (HDACs), respectively. Another group belonging to ... >> More
The elucidation of the mechanisms of transcriptional activation and repression in eukaryotic cells has shed light on the important role of acetylation-deacetylation of histones mediated by histone acetyltransferases (HATs) and histone deacetylases (HDACs), respectively. Another group belonging to the large family of sirtuins (silent information regulators (SIRs)) has an (nicotinamide adenine dinucleotide) NAD(+)-dependent HDAC activity. Several inhibitors of HDACs (HDIs) have been shown to exert antitumor effects. Interestingly, some of the HDIs exerted a broad spectrum of antiprotozoal activity. The purpose of this review is to analyze some of the current data related to the deacetylase enzymes as a possible target for drug development in cancer and parasitic diseases with special reference to protozoan infections. Given the structural differences among members of this family of enzymes, development of specific inhibitors will not only allow selective therapeutic intervention, but may also provide a powerful tool for functional study of these enzymes. << Less
J Biomed Biotechnol 2006:13474-13474(2006) [PubMed] [EuropePMC]
-
Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors.
Finnin M.S., Donigian J.R., Cohen A., Richon V.M., Rifkind R.A., Marks P.A., Breslow R., Pavletich N.P.
Histone deacetylases (HDACs) mediate changes in nucleosome conformation and are important in the regulation of gene expression. HDACs are involved in cell-cycle progression and differentiation, and their deregulation is associated with several cancers. HDAC inhibitors, such as trichostatin A (TSA) ... >> More
Histone deacetylases (HDACs) mediate changes in nucleosome conformation and are important in the regulation of gene expression. HDACs are involved in cell-cycle progression and differentiation, and their deregulation is associated with several cancers. HDAC inhibitors, such as trichostatin A (TSA) and suberoylanilide hydroxamic acid (SAHA), have anti-tumour effects, as they can inhibit cell growth, induce terminal differentiation and prevent the formation of tumours in mice models, and they are effective in the treatment of promyelocytic leukemia. Here we describe the structure of the histone deacetylase catalytic core, as revealed by the crystal structure of a homologue from the hyperthermophilic bacterium Aquifex aeolicus, that shares 35.2% identity with human HDAC1 over 375 residues, deacetylates histones in vitro and is inhibited by TSA and SAHA. The deacetylase, deacetylase-TSA and deacetylase-SAHA structures reveal an active site consisting of a tubular pocket, a zinc-binding site and two Asp-His charge-relay systems, and establish the mechanism of HDAC inhibition. The residues that make up the active site and contact the inhibitors are conserved across the HDAC family. These structures also suggest a mechanism for the deacetylation reaction and provide a framework for the further development of HDAC inhibitors as antitumour agents. << Less
-
Properties of the yeast nuclear histone deacetylase.
Sanchez del Pino M.M., Lopez-Rodas G., Sendra R., Tordera V.
A nuclear histone deacetylase from yeast was partially purified and some of its characteristics were studied. Histone deacetylase activity was stimulated in vitro by high-mobility-group nonhistone chromatin proteins 1 and 2 and ubiquitin and inhibited by spermine and spermidine, whereas n-butyrate ... >> More
A nuclear histone deacetylase from yeast was partially purified and some of its characteristics were studied. Histone deacetylase activity was stimulated in vitro by high-mobility-group nonhistone chromatin proteins 1 and 2 and ubiquitin and inhibited by spermine and spermidine, whereas n-butyrate had no significant inhibitory effect. Like the mammalian enzyme, partially purified histone deacetylase from yeast was strongly inhibited by trichostatin A. However, in crude extract preparations the yeast enzyme was not inhibited and treatment with trichostatin in vivo did not show any effect, either on the histone acetylation level or on cell viability. At low ionic strength, the enzyme can be isolated as a complex of high molecular mass that is much less inhibited by trichostatin A than is partially purified histone deacetylase activity. Furthermore, radiolabelled oligonucleosomes were more efficiently deacetylated by the complex than by the low-molecular-mass form of the enzyme. The histone deacetylase activity was separated from a polyamine deacetylase activity and its specificity studied. Using h.p.l.c.-purified core histone species as substrate, histone deacetylase from yeast is able to deacetylate all core histones with a slight preference for H3. Our results support the idea that the yeast histone deacetylase may act as a high-molecular-mass complex in vivo. << Less
-
Histone deacetylase 10 regulates DNA mismatch repair and may involve the deacetylation of MutS homolog 2.
Radhakrishnan R., Li Y., Xiang S., Yuan F., Yuan Z., Telles E., Fang J., Coppola D., Shibata D., Lane W.S., Zhang Y., Zhang X., Seto E.
MutS homolog 2 (MSH2) is an essential DNA mismatch repair (MMR) protein. It interacts with MSH6 or MSH3 to form the MutSα or MutSβ complex, respectively, which recognize base-base mispairs and insertions/deletions and initiate the repair process. Mutation or dysregulation of MSH2 causes genomic in ... >> More
MutS homolog 2 (MSH2) is an essential DNA mismatch repair (MMR) protein. It interacts with MSH6 or MSH3 to form the MutSα or MutSβ complex, respectively, which recognize base-base mispairs and insertions/deletions and initiate the repair process. Mutation or dysregulation of MSH2 causes genomic instability that can lead to cancer. MSH2 is acetylated at its C terminus, and histone deacetylase (HDAC6) deacetylates MSH2. However, whether other regions of MSH2 can be acetylated and whether other histone deacetylases (HDACs) and histone acetyltransferases (HATs) are involved in MSH2 deacetylation/acetylation is unknown. Here, we report that MSH2 can be acetylated at Lys-73 near the N terminus. Lys-73 is highly conserved across many species. Although several Class I and II HDACs interact with MSH2, HDAC10 is the major enzyme that deacetylates MSH2 at Lys-73. Histone acetyltransferase HBO1 might acetylate this residue. HDAC10 overexpression in HeLa cells stimulates cellular DNA MMR activity, whereas HDAC10 knockdown decreases DNA MMR activity. Thus, our study identifies an HDAC10-mediated regulatory mechanism controlling the DNA mismatch repair function of MSH2. << Less
J. Biol. Chem. 290:22795-22804(2015) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen.
Phiel C.J., Zhang F., Huang E.Y., Guenther M.G., Lazar M.A., Klein P.S.
Valproic acid is widely used to treat epilepsy and bipolar disorder and is also a potent teratogen, but its mechanisms of action in any of these settings are unknown. We report that valproic acid activates Wntdependent gene expression, similar to lithium, the mainstay of therapy for bipolar disord ... >> More
Valproic acid is widely used to treat epilepsy and bipolar disorder and is also a potent teratogen, but its mechanisms of action in any of these settings are unknown. We report that valproic acid activates Wntdependent gene expression, similar to lithium, the mainstay of therapy for bipolar disorder. Valproic acid, however, acts through a distinct pathway that involves direct inhibition of histone deacetylase (IC(50) for HDAC1 = 0.4 mm). At therapeutic levels, valproic acid mimics the histone deacetylase inhibitor trichostatin A, causing hyperacetylation of histones in cultured cells. Valproic acid, like trichostatin A, also activates transcription from diverse exogenous and endogenous promoters. Furthermore, valproic acid and trichostatin A have remarkably similar teratogenic effects in vertebrate embryos, while non-teratogenic analogues of valproic acid do not inhibit histone deacetylase and do not activate transcription. Based on these observations, we propose that inhibition of histone deacetylase provides a mechanism for valproic acid-induced birth defects and could also explain the efficacy of valproic acid in the treatment of bipolar disorder. << Less
-
Histone deacetylases (HDACs): characterization of the classical HDAC family.
de Ruijter A.J., van Gennip A.H., Caron H.N., Kemp S., van Kuilenburg A.B.
Transcriptional regulation in eukaryotes occurs within a chromatin setting, and is strongly influenced by the post-translational modification of histones, the building blocks of chromatin, such as methylation, phosphorylation and acetylation. Acetylation is probably the best understood of these mo ... >> More
Transcriptional regulation in eukaryotes occurs within a chromatin setting, and is strongly influenced by the post-translational modification of histones, the building blocks of chromatin, such as methylation, phosphorylation and acetylation. Acetylation is probably the best understood of these modifications: hyperacetylation leads to an increase in the expression of particular genes, and hypoacetylation has the opposite effect. Many studies have identified several large, multisubunit enzyme complexes that are responsible for the targeted deacetylation of histones. The aim of this review is to give a comprehensive overview of the structure, function and tissue distribution of members of the classical histone deacetylase (HDAC) family, in order to gain insight into the regulation of gene expression through HDAC activity. SAGE (serial analysis of gene expression) data show that HDACs are generally expressed in almost all tissues investigated. Surprisingly, no major differences were observed between the expression pattern in normal and malignant tissues. However, significant variation in HDAC expression was observed within tissue types. HDAC inhibitors have been shown to induce specific changes in gene expression and to influence a variety of other processes, including growth arrest, differentiation, cytotoxicity and induction of apoptosis. This challenging field has generated many fascinating results which will ultimately lead to a better understanding of the mechanism of gene transcription as a whole. << Less
-
Cloning, expression, and biochemical characterization of a new histone deacetylase-like protein from Thermus caldophilus GK24.
Song Y.M., Kim Y.S., Kim D., Lee D.S., Kwon H.J.
Histone deactylases (HDACs) are members of an ancient enzyme family found in eukaryotes as well as in prokaryotes such as archaebacteria and eubacteria. We here report a new histone deacetylase (Tca HDAC) that was cloned from the genomic library of Thermus caldophilus GK24 based on homology analys ... >> More
Histone deactylases (HDACs) are members of an ancient enzyme family found in eukaryotes as well as in prokaryotes such as archaebacteria and eubacteria. We here report a new histone deacetylase (Tca HDAC) that was cloned from the genomic library of Thermus caldophilus GK24 based on homology analysis with human histone deacetylase1 (HDAC1). The gene contains an open reading frame encoding 375 amino acids with a calculated molecular mass of 42,188 Da and the deduced amino acid sequence of Tca HDAC showed a 31% homology to human HDAC1. The Tca HDAC gene was over-expressed in Escherichia coli using a Glutathione-S transferase (GST) fusion vector (pGEX-4T-1) and the purified protein showed a deacetylase activity toward the fluorogenic substrate for HDAC. Moreover, the enzyme activity was inhibited by trichostatin A, a specific HDAC inhibitor, in a dose-dependent manner. Optimum temperature and pH of the enzyme was found to be approximately 70 degrees C and 7.0, respectively. In addition, zinc ion is required for catalytic activity of the enzyme. Together, these data demonstrate that Tca HDAC is a new histone deacetylase-like enzyme from T. caldophilus GK24 and will be a useful tool for deciphering the role of HDAC in the prokaryote and development of new biochemical reactions. << Less
Biochem Biophys Res Commun 361:55-61(2007) [PubMed] [EuropePMC]
-
Chemical studies of histone acetylation. Substrate specificity of a histone deacetylase from calf thymus nuclei.
Krieger D.E., Levine R., Merrifield R.B., Vidali G., Allfrey V.G.