Enzymes
UniProtKB help_outline | 4 proteins |
Enzyme class help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline all-trans-lycopene Identifier CHEBI:15948 (Beilstein: 1730097; CAS: 502-65-8) help_outline Charge 0 Formula C40H56 InChIKeyhelp_outline OAIJSZIZWZSQBC-GYZMGTAESA-N SMILEShelp_outline CC(C)=CCC\C(C)=C\C=C\C(C)=C\C=C\C(C)=C\C=C\C=C(C)\C=C\C=C(C)\C=C\C=C(/C)CCC=C(C)C 2D coordinates Mol file for the small molecule Search links Involved in 10 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline dimethylallyl diphosphate Identifier CHEBI:57623 (Beilstein: 5288443; CAS: 22679-02-3) help_outline Charge -3 Formula C5H9O7P2 InChIKeyhelp_outline CBIDRCWHNCKSTO-UHFFFAOYSA-K SMILEShelp_outline CC(C)=CCOP([O-])(=O)OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 79 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (Beilstein: 3587155; CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,204 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline dihydroisopentenyldehydrorhodopin Identifier CHEBI:87163 Charge 0 Formula C45H66O InChIKeyhelp_outline DBNMXBPBTSCRMV-DHRLHYKWSA-N SMILEShelp_outline C([C@H](CC/C(=C/C=C/C(=C/C=C/C(=C/C=C/C=C(/C=C/C=C(/C=C/C=C(/CCC=C(C)C)\C)\C)\C)/C)/C)/C)CC=C(C)C)(C)(C)O 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline diphosphate Identifier CHEBI:33019 (Beilstein: 185088) help_outline Charge -3 Formula HO7P2 InChIKeyhelp_outline XPPKVPWEQAFLFU-UHFFFAOYSA-K SMILEShelp_outline OP([O-])(=O)OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 1,129 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:58188 | RHEA:58189 | RHEA:58190 | RHEA:58191 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
MetaCyc help_outline |
Publications
-
Complete biosynthetic pathway of the C50 carotenoid bacterioruberin from lycopene in the extremely halophilic archaeon Haloarcula japonica.
Yang Y., Yatsunami R., Ando A., Miyoko N., Fukui T., Takaichi S., Nakamura S.
<h4>Unlabelled</h4>Haloarcula japonica, an extremely halophilic archaeon that requires high concentrations of NaCl for growth, accumulates the C50 carotenoid bacterioruberin (BR). By homology analysis, a gene cluster, including c0507, c0506, and c0505, was found and predicted to be involved in the ... >> More
<h4>Unlabelled</h4>Haloarcula japonica, an extremely halophilic archaeon that requires high concentrations of NaCl for growth, accumulates the C50 carotenoid bacterioruberin (BR). By homology analysis, a gene cluster, including c0507, c0506, and c0505, was found and predicted to be involved in the synthesis of bacterioruberin. To elucidate the function of the encoded enzymes, we constructed Ha. japonica mutants of these genes and analyzed carotenoids produced by the mutants. Our research showed that c0507, c0506, and c0505 encoded a carotenoid 3,4-desaturase (CrtD), a bifunctional lycopene elongase and 1,2-hydratase (LyeJ), and a C50 carotenoid 2",3"-hydratase (CruF), respectively. The above three carotenoid biosynthetic enzymes catalyze the reactions that convert lycopene to bacterioruberin in Ha. japonica. This is the first identification of functional CrtD and CruF in archaea and elucidation of the complete biosynthetic pathway of bacterioruberin from lycopene.<h4>Importance</h4>Haloarcula japonica, an extremely halophilic archaeon, accumulates the C50 carotenoid bacterioruberin (BR). In this study, we have identified three BR biosynthetic enzymes and have elucidated their functions. Among them, two enzymes were found in an archaeon for the first time. Our results revealed the biosynthetic pathway responsible for production of BR in Ha. japonica and provide a basis for investigating carotenoid biosynthetic pathways in other extremely halophilic archaea. Elucidation of the carotenoid biosynthetic pathway in Ha. japonica may also prove useful for producing the C50 carotenoid BR efficiently by employing genetically modified haloarchaeal strains. << Less
J. Bacteriol. 197:1614-1623(2015) [PubMed] [EuropePMC]
This publication is cited by 6 other entries.
-
Genes from a Dietzia sp. for synthesis of C40 and C50 beta-cyclic carotenoids.
Tao L., Yao H., Cheng Q.
Dietzia sp. CQ4 accumulated the C(40) beta-cyclic carotenoids (canthaxanthin and echinenone) and the C(50) beta-cyclic carotenoid (C.p.450 monoglucoside). A plant-type lycopene beta-cyclase gene crtL was identified for beta-cyclization of the C(40) carotenoids. A carotenoid synthesis gene cluster ... >> More
Dietzia sp. CQ4 accumulated the C(40) beta-cyclic carotenoids (canthaxanthin and echinenone) and the C(50) beta-cyclic carotenoid (C.p.450 monoglucoside). A plant-type lycopene beta-cyclase gene crtL was identified for beta-cyclization of the C(40) carotenoids. A carotenoid synthesis gene cluster was identified away from the crtL gene, which contained the crtEBI genes for the synthesis of lycopene followed by the lbtABC genes for lycopene elongation and beta-cyclization of the C(50) carotenoids. This C(50) beta-cyclic carotenoid synthesis gene cluster from Dietzia sp. CQ4 showed high homology with the gene clusters for synthesizing the C(50) epsilon-cyclic carotenoids (decaprenoxanthin and glucosides) from Corynebacterium glutamicum and Agromyces mediolanus. One unique feature of the C(50) beta-cyclic carotenoid synthesis genes in Dietzia sp. CQ4 was that the gene encoding a C(50) carotenoid beta-cyclase subunit and the gene encoding the lycopene elongase appeared to be fused as a single gene (lbtBC). Expression of the gene (lbtA) encoding another subunit of the C(50) carotenoid beta-cyclase and the lbtBC gene in lycopene-accumulating Escherichia coli produced almost exclusively the C(50) beta-cyclic carotenoid C.p.450. One gene (crtX) with high homology to glycosyl transferases was transcribed in the opposite orientation downstream of the lbtBC gene. The crtX gene was likely involved in C.p.450 glucosylation in Dietzia sp. CQ4. The pathway analogous to the synthesis of the C(50) epsilon-cyclic carotenoids was proposed for the synthesis of the C(50) beta-cyclic carotenoids. << Less
Gene 386:90-97(2007) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Bacterioopsin-mediated regulation of bacterioruberin biosynthesis in Halobacterium salinarum.
Dummer A.M., Bonsall J.C., Cihla J.B., Lawry S.M., Johnson G.C., Peck R.F.
Integral membrane protein complexes consisting of proteins and small molecules that act as cofactors have important functions in all organisms. To form functional complexes, cofactor biosynthesis must be coordinated with the production of corresponding apoproteins. To examine this coordination, we ... >> More
Integral membrane protein complexes consisting of proteins and small molecules that act as cofactors have important functions in all organisms. To form functional complexes, cofactor biosynthesis must be coordinated with the production of corresponding apoproteins. To examine this coordination, we study bacteriorhodopsin (BR), a light-induced proton pump in the halophilic archaeon Halobacterium salinarum. This complex consists of a retinal cofactor and bacterioopsin (BO), the BR apoprotein. To examine possible novel regulatory mechanisms linking BO and retinal biosynthesis, we deleted bop, the gene that encodes BO. bop deletion resulted in a dramatic increase of bacterioruberins, carotenoid molecules that share biosynthetic precursors with retinal. Additional studies revealed that bacterioruberins accumulate in the absence of BO regardless of the presence of retinal or BR, suggesting that BO inhibits bacterioruberin biosynthesis to increase the availability of carotenoid precursors for retinal biosynthesis. To further examine this potential regulatory mechanism, we characterized an enzyme, encoded by the lye gene, that catalyzes bacterioruberin biosynthesis. BO-mediated inhibition of bacterioruberin synthesis appears to be specific to the H. salinarum lye-encoded enzyme, as expression of a lye homolog from Haloferax volcanii, a related archaeon that synthesizes bacterioruberins but lacks opsins, resulted in bacterioruberin synthesis that was not reduced in the presence of BO. Our results provide evidence for a novel regulatory mechanism in which biosynthesis of a cofactor is promoted by apoprotein-mediated inhibition of an alternate biochemical pathway. Specifically, BO accumulation promotes retinal production by inhibiting bacterioruberin biosynthesis. << Less
J. Bacteriol. 193:5658-5667(2011) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.