Reaction participants Show >> << Hide
- Name help_outline Na+ Identifier CHEBI:29101 (CAS: 17341-25-2) help_outline Charge 1 Formula Na InChIKeyhelp_outline FKNQFGJONOIPTF-UHFFFAOYSA-N SMILEShelp_outline [Na+] 2D coordinates Mol file for the small molecule Search links Involved in 257 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline diphosphate Identifier CHEBI:33019 (Beilstein: 185088) help_outline Charge -3 Formula HO7P2 InChIKeyhelp_outline XPPKVPWEQAFLFU-UHFFFAOYSA-K SMILEShelp_outline OP([O-])(=O)OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 1,139 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,264 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline phosphate Identifier CHEBI:43474 Charge -2 Formula HO4P InChIKeyhelp_outline NBIIXXVUZAFLBC-UHFFFAOYSA-L SMILEShelp_outline OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 1,002 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:57884 | RHEA:57885 | RHEA:57886 | RHEA:57887 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
MetaCyc help_outline |
Publications
-
Membrane-bound pyrophosphatase of Thermotoga maritima requires sodium for activity.
Belogurov G.A., Malinen A.M., Turkina M.V., Jalonen U., Rytkonen K., Baykov A.A., Lahti R.
Membrane-bound pyrophosphatase of the hyperthermophilic bacterium Thermotoga maritima(Tm-PPase), a homologue of H(+)-translocating pyrophosphatase, was expressed in Escherichia coli and isolated as inner membrane vesicles. In contrast to all previously studied H(+)-PPases, both native and recombin ... >> More
Membrane-bound pyrophosphatase of the hyperthermophilic bacterium Thermotoga maritima(Tm-PPase), a homologue of H(+)-translocating pyrophosphatase, was expressed in Escherichia coli and isolated as inner membrane vesicles. In contrast to all previously studied H(+)-PPases, both native and recombinant Tm-PPases exhibited an absolute requirement for Na(+) but displayed the highest activity in the presence of millimolar levels of both Na(+) and K(+). Detergent-solubilized recombinant Tm-PPase was thermostable and retained the monovalent cation requirements of the membrane-embedded enzyme. Steady-state kinetic analysis of pyrophosphate hydrolysis by the wild-type enzyme suggested that two Na(+) binding sites and one K(+) binding site are involved in enzyme activation. The affinity of the site that binds Na(+) first is increased with increasing K(+) concentration. In contrast, only one Na(+) binding site (K(+)-dependent) and one K(+) binding site were involved in activation of the Asp(703) --> Asn variant. Thus, Asp(703) may form part of the K(+)-independent Na(+) binding site. Unlike all other membrane and soluble PPases, Tm-PPase did not catalyze oxygen exchange between phosphate and water. However, solubilized Tm-PPase exhibited low but measurable PP(i)-synthesizing activity, which also required Na(+) but was inhibited by K(+). These results demonstrate that T. maritima PPase belongs to a previously unknown subfamily of Na(+)-dependent H(+)-PPase homologues and may be an analogue of Na(+),K(+)-ATPase. << Less
-
Na+-pyrophosphatase: a novel primary sodium pump.
Malinen A.M., Belogurov G.A., Baykov A.A., Lahti R.
Membrane-bound pyrophosphatase (PPase) is commonly believed to couple pyrophosphate (PPi) hydrolysis to H+ transport across the membrane. Here, we demonstrate that two newly isolated bacterial membrane PPases from the mesophile Methanosarcina mazei (Mm-PPase) and the moderate thermophile Moorella ... >> More
Membrane-bound pyrophosphatase (PPase) is commonly believed to couple pyrophosphate (PPi) hydrolysis to H+ transport across the membrane. Here, we demonstrate that two newly isolated bacterial membrane PPases from the mesophile Methanosarcina mazei (Mm-PPase) and the moderate thermophile Moorella thermoacetica and a previously described PPase from the hyperthermophilic bacterium Thermotoga maritima catalyze Na+ rather than H+ transport into Escherichia coli inner membrane vesicles (IMV). When assayed in uncoupled IMV, the three PPases exhibit an absolute requirement for Na+ but display the highest hydrolyzing activity in the presence of both Na+ and K+. Steady-state kinetic analysis of PPi hydrolysis by Mm-PPase revealed two Na+ binding sites. One of these sites can also bind K+, resulting in a 10-fold increase in the affinity of the other site for Na+ and a 2-fold increase in maximal velocity. PPi-driven 22Na+ transport into IMV containing Mm-PPase was unaffected by the protonophore carbonyl cyanide m-chlorophenylhydrazone, inhibited by the Na+ ionophore monensin, and activated by the K+ ionophore valinomycin. The Na+ transport was accompanied by the generation of a positive inside membrane potential as reported by Oxonol VI. These findings define Na+-dependent PPases as electrogenic Na+ pumps. Phylogenetic analysis suggests that ancient gene duplication preceded the split of Na+- and H+-PPases. << Less