Reaction participants Show >> << Hide
-
Name help_outline
polyphosphate
Identifier
CHEBI:16838
Charge
Formula
(O3P)nHO
Search links
Involved in 10 reaction(s)
Find proteins in UniProtKB for this molecule
Form(s) in this reaction:
-
Identifier: RHEA-COMP:9859Polymer name: [phosphate](n)Polymerization index help_outline nFormula HO(O3P)nCharge (-1)(-1)nMol File for the polymer
-
Identifier: RHEA-COMP:14280Polymer name: [phosphate](n+1)Polymerization index help_outline n+1Formula HO(O3P)n+1Charge (-1)(-1)n+1Mol File for the polymer
-
- Name help_outline ADP Identifier CHEBI:456216 (Beilstein: 3783669) help_outline Charge -3 Formula C10H12N5O10P2 InChIKeyhelp_outline XTWYTFMLZFPYCI-KQYNXXCUSA-K SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 841 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline AMP Identifier CHEBI:456215 Charge -2 Formula C10H12N5O7P InChIKeyhelp_outline UDMBCSSLTHHNCD-KQYNXXCUSA-L SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 508 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:57820 | RHEA:57821 | RHEA:57822 | RHEA:57823 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
MetaCyc help_outline |
Publications
-
Polyphosphate-dependent synthesis of ATP and ADP by the family-2 polyphosphate kinases in bacteria.
Nocek B., Kochinyan S., Proudfoot M., Brown G., Evdokimova E., Osipiuk J., Edwards A.M., Savchenko A., Joachimiak A., Yakunin A.F.
Inorganic polyphosphate (polyP) is a linear polymer of tens or hundreds of phosphate residues linked by high-energy bonds. It is found in all organisms and has been proposed to serve as an energy source in a pre-ATP world. This ubiquitous and abundant biopolymer plays numerous and vital roles in m ... >> More
Inorganic polyphosphate (polyP) is a linear polymer of tens or hundreds of phosphate residues linked by high-energy bonds. It is found in all organisms and has been proposed to serve as an energy source in a pre-ATP world. This ubiquitous and abundant biopolymer plays numerous and vital roles in metabolism and regulation in prokaryotes and eukaryotes, but the underlying molecular mechanisms for most activities of polyP remain unknown. In prokaryotes, the synthesis and utilization of polyP are catalyzed by 2 families of polyP kinases, PPK1 and PPK2, and polyphosphatases. Here, we present structural and functional characterization of the PPK2 family. Proteins with a single PPK2 domain catalyze polyP-dependent phosphorylation of ADP to ATP, whereas proteins containing 2 fused PPK2 domains phosphorylate AMP to ADP. Crystal structures of 2 representative proteins, SMc02148 from Sinorhizobium meliloti and PA3455 from Pseudomonas aeruginosa, revealed a 3-layer alpha/beta/alpha sandwich fold with an alpha-helical lid similar to the structures of microbial thymidylate kinases, suggesting that these proteins share a common evolutionary origin and catalytic mechanism. Alanine replacement mutagenesis identified 9 conserved residues, which are required for activity and include the residues from both Walker A and B motifs and the lid. Thus, the PPK2s represent a molecular mechanism, which potentially allow bacteria to use polyP as an intracellular energy reserve for the generation of ATP and survival. << Less
Proc. Natl. Acad. Sci. U.S.A. 105:17730-17735(2008) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
A new subfamily of polyphosphate kinase 2 (class III PPK2) catalyzes both nucleoside monophosphate phosphorylation and nucleoside diphosphate phosphorylation.
Motomura K., Hirota R., Okada M., Ikeda T., Ishida T., Kuroda A.
Inorganic polyphosphate (polyP) is a linear polymer of tens to hundreds of phosphate (Pi) residues linked by "high-energy" phosphoanhydride bonds as in ATP. PolyP kinases, responsible for the synthesis and utilization of polyP, are divided into two families (PPK1 and PPK2) due to differences in am ... >> More
Inorganic polyphosphate (polyP) is a linear polymer of tens to hundreds of phosphate (Pi) residues linked by "high-energy" phosphoanhydride bonds as in ATP. PolyP kinases, responsible for the synthesis and utilization of polyP, are divided into two families (PPK1 and PPK2) due to differences in amino acid sequence and kinetic properties. PPK2 catalyzes preferentially polyP-driven nucleotide phosphorylation (utilization of polyP), which is important for the survival of microbial cells under conditions of stress or pathogenesis. Phylogenetic analysis suggested that the PPK2 family could be divided into three subfamilies (classes I, II, and III). Class I and II PPK2s catalyze nucleoside diphosphate and nucleoside monophosphate phosphorylation, respectively. Here, we demonstrated that class III PPK2 catalyzes both nucleoside monophosphate and nucleoside diphosphate phosphorylation, thereby enabling us to synthesize ATP from AMP by a single enzyme. Moreover, class III PPK2 showed broad substrate specificity over purine and pyrimidine bases. This is the first demonstration that class III PPK2 possesses both class I and II activities. << Less
Appl. Environ. Microbiol. 80:2602-2608(2014) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Polyphosphate synthetic activity of polyphosphate:AMP phosphotransferase in Acinetobacter johnsonii 210A.
Itoh H., Shiba T.
Polyphosphate:AMP phosphotransferase (PAP) has been identified as an enzyme that catalyzes the phosphorylation of AMP with inorganic polyphosphates [poly(P)] as phosphate donors. We found that the purified PAP of Acinetobacter johnsonii 210A has poly(P) synthetic activity. The PAP catalyzes the de ... >> More
Polyphosphate:AMP phosphotransferase (PAP) has been identified as an enzyme that catalyzes the phosphorylation of AMP with inorganic polyphosphates [poly(P)] as phosphate donors. We found that the purified PAP of Acinetobacter johnsonii 210A has poly(P) synthetic activity. The PAP catalyzes the dephosphorylation of ADP and processively synthesizes poly(P) of 200 to 700 residues. Comparatively lower concentrations of MgCl(2) (20 mM) were required to obtain optimum poly(P) synthetic activity, whereas higher concentrations of MgCl(2) (100 mM) were necessary for optimum PAP activity. ADP is preferred over GDP as a phosphate donor for poly(P) synthesis. The K(m) and V(max) values for ADP in the poly(P) synthetic activity of PAP were 8.3 mM and 55 micromol min(-1) mg(-1), respectively. We concluded that the PAP of A. johnsonii 210A is a novel type of poly(P) kinase that uses ADP and GDP as substrates. << Less
-
Polyphosphate:AMP phosphotransferase as a polyphosphate-dependent nucleoside monophosphate kinase in Acinetobacter johnsonii 210A.
Shiba T., Itoh H., Kameda A., Kobayashi K., Kawazoe Y., Noguchi T.
We have cloned the gene for polyphosphate:AMP phosphotransferase (PAP), the enzyme that catalyzes phosphorylation of AMP to ADP at the expense of polyphosphate [poly(P)] in Acinetobacter johnsonii 210A. A genomic DNA library was constructed in Escherichia coli, and crude lysates of about 6,000 clo ... >> More
We have cloned the gene for polyphosphate:AMP phosphotransferase (PAP), the enzyme that catalyzes phosphorylation of AMP to ADP at the expense of polyphosphate [poly(P)] in Acinetobacter johnsonii 210A. A genomic DNA library was constructed in Escherichia coli, and crude lysates of about 6,000 clones were screened for PAP activity. PAP activity was evaluated by measuring ATP produced by the coupled reactions of PAP and purified E. coli poly(P) kinases (PPKs). In this coupled reaction, PAP produces ADP from poly(P) and AMP, and the resulting ADP is converted to ATP by PPK. The isolated pap gene (1,428 bp) encodes a protein of 475 amino acids with a molecular mass of 55.8 kDa. The C-terminal region of PAP is highly homologous with PPK2 homologs isolated from Pseudomonas aeruginosa PAO1. Two putative phosphate-binding motifs (P-loops) were also identified. The purified PAP enzyme had not only strong PAP activity but also poly(P)-dependent nucleoside monophosphate kinase activity, by which it converted ribonucleoside monophosphates and deoxyribonucleoside monophosphates to ribonucleoside diphosphates and deoxyribonucleoside diphosphates, respectively. The activity for AMP was about 10 times greater than that for GMP and 770 and about 1,100 times greater than that for UMP and CMP. << Less
-
Properties of polyphosphate:AMP phosphotransferase of Acinetobacter strain 210A.
Bonting C.F., Kortstee G.J., Zehnder A.J.
Polyphosphate:AMP phosphotransferase, an enzyme which catalyzes the phosphorylation of AMP to ADP at the expense of polyphosphate, was purified more than 1,500-fold from Acinetobacter strain 210A by streptomycin sulfate precipitation and by Mono-Q, Phenyl Superose, and Superose column chromatograp ... >> More
Polyphosphate:AMP phosphotransferase, an enzyme which catalyzes the phosphorylation of AMP to ADP at the expense of polyphosphate, was purified more than 1,500-fold from Acinetobacter strain 210A by streptomycin sulfate precipitation and by Mono-Q, Phenyl Superose, and Superose column chromatography. Streptomycin sulfate precipitation appeared to be an effective step in the purification procedure. During the following chromatographic steps, there was a 29-fold increase in specific activity but the yield was low (0.3%). Kinetic studies showed apparent Km values of 0.26 mM for AMP and 0.8 microM for polyphosphate with an average chain length of 35 phosphate groups. The highest activities were found with polyphosphate molecules of 18 to 44 phosphate residues. The polyphosphate chain was degraded completely to ADP. The mechanism of degradation is processive. No activity was obtained with ortho-, pyro-, tri-, and tetraphosphate. The enzyme was inhibited by pyro-, tri-, and tetraphosphate. The inhibition by tri- and tetraphosphate was mixed with polyphosphate as a substrate. The inhibition constants for the dissociation of the enzyme-inhibitor complex and for the enzyme-inhibitor-substrate complex were 0.9 and 6.5 mM, respectively, for triphosphate and 0.7 and 1.5 mM, respectively, for tetraphosphate. << Less