Enzymes
UniProtKB help_outline | 1 proteins |
Enzyme class help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline trans-aconitate Identifier CHEBI:15708 (Beilstein: 3907462) help_outline Charge -3 Formula C6H3O6 InChIKeyhelp_outline GTZCVFVGUGFEME-HNQUOIGGSA-K SMILEShelp_outline [O-]C(=O)C\C(=C/C([O-])=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 5 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CO2 Identifier CHEBI:16526 (Beilstein: 1900390; CAS: 124-38-9) help_outline Charge 0 Formula CO2 InChIKeyhelp_outline CURLTUGMZLYLDI-UHFFFAOYSA-N SMILEShelp_outline O=C=O 2D coordinates Mol file for the small molecule Search links Involved in 997 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline itaconate Identifier CHEBI:17240 (Beilstein: 3904702; CAS: 2964-00-3) help_outline Charge -2 Formula C5H4O4 InChIKeyhelp_outline LVHBHZANLOWSRM-UHFFFAOYSA-L SMILEShelp_outline C(C(CC([O-])=O)=C)([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 4 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:57728 | RHEA:57729 | RHEA:57730 | RHEA:57731 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
Ustilago maydis produces itaconic acid via the unusual intermediate trans-aconitate.
Geiser E., Przybilla S.K., Friedrich A., Buckel W., Wierckx N., Blank L.M., Boelker M.
Itaconic acid is an important biomass-derived chemical building block but has also recently been identified as a metabolite produced in mammals, which has antimicrobial activity. The biosynthetic pathway of itaconic acid has been elucidated in the ascomycetous fungus Aspergillus terreus and in hum ... >> More
Itaconic acid is an important biomass-derived chemical building block but has also recently been identified as a metabolite produced in mammals, which has antimicrobial activity. The biosynthetic pathway of itaconic acid has been elucidated in the ascomycetous fungus Aspergillus terreus and in human macrophages. In both organisms itaconic acid is generated by decarboxylation of the tricarboxylic acid (TCA) cycle intermediate cis-aconitate. Here, we show that the basidiomycetous fungus Ustilago maydis uses an alternative pathway and produces itaconic acid via trans-aconitate, the thermodynamically favoured isomer of cis-aconitate. We have identified a gene cluster that contains all genes involved in itaconic acid formation. Trans-aconitate is generated from cis-aconitate by a cytosolic aconitate-Δ-isomerase (Adi1) that belongs to the PrpF family of proteins involved in bacterial propionate degradation. Decarboxylation of trans-aconitate is catalyzed by a novel enzyme, trans-aconitate decarboxylase (Tad1). Tad1 displays significant sequence similarity with bacterial 3-carboxy-cis,cis-muconate lactonizing enzymes (CMLE). This suggests that U. maydis has evolved an alternative biosynthetic pathway for itaconate production using the toxic intermediate trans-aconitate. Overexpression of a pathway-specific transcription factor (Ria1) or a mitochondrial tricarboxylic acid transporter (Mtt1) resulted in a twofold increase in itaconate yield. Therefore, our findings offer new strategies for biotechnological production of this valuable biomass-derived chemical. << Less