Reaction participants Show >> << Hide
-
Name help_outline
a menaquinone
Identifier
CHEBI:16374
(CAS: 11032-49-8)
help_outline
Charge
0
Formula
(C5H8)nC11H8O2
Search links
Involved in 47 reaction(s)
Find proteins in UniProtKB for this molecule
Form(s) in this reaction:
-
Identifier: RHEA-COMP:9537Polymer name: a menaquinonePolymerization index help_outline nFormula C11H8O2(C5H8)nCharge (0)(0)nMol File for the polymer
-
- Name help_outline sulfite Identifier CHEBI:17359 (CAS: 14265-45-3) help_outline Charge -2 Formula O3S InChIKeyhelp_outline LSNNMFCWUKXFEE-UHFFFAOYSA-L SMILEShelp_outline [O-]S([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 60 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,264 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Name help_outline
a menaquinol
Identifier
CHEBI:18151
Charge
0
Formula
C11H10O2(C5H8)n
Search links
Involved in 53 reaction(s)
Find proteins in UniProtKB for this molecule
Form(s) in this reaction:
-
Identifier: RHEA-COMP:9539Polymer name: a menaquinolPolymerization index help_outline nFormula C11H10O2(C5H8)nCharge (0)(0)nMol File for the polymer
-
- Name help_outline sulfate Identifier CHEBI:16189 (CAS: 14808-79-8) help_outline Charge -2 Formula O4S InChIKeyhelp_outline QAOWNCQODCNURD-UHFFFAOYSA-L SMILEShelp_outline [O-]S([O-])(=O)=O 2D coordinates Mol file for the small molecule Search links Involved in 91 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:57012 | RHEA:57013 | RHEA:57014 | RHEA:57015 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
MetaCyc help_outline |
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Sulfite oxidation in the purple sulfur bacterium Allochromatium vinosum: identification of SoeABC as a major player and relevance of SoxYZ in the process.
Dahl C., Franz B., Hensen D., Kesselheim A., Zigann R.
In phototrophic sulfur bacteria, sulfite is a well-established intermediate during reduced sulfur compound oxidation. Sulfite is generated in the cytoplasm by the reverse-acting dissimilatory sulfite reductase DsrAB. Many purple sulfur bacteria can even use externally available sulfite as a photos ... >> More
In phototrophic sulfur bacteria, sulfite is a well-established intermediate during reduced sulfur compound oxidation. Sulfite is generated in the cytoplasm by the reverse-acting dissimilatory sulfite reductase DsrAB. Many purple sulfur bacteria can even use externally available sulfite as a photosynthetic electron donor. Nevertheless, the exact mode of sulfite oxidation in these organisms is a long-standing enigma. Indirect oxidation in the cytoplasm via adenosine-5'-phosphosulfate (APS) catalysed by APS reductase and ATP sulfurylase is neither generally present nor essential. The inhibition of sulfite oxidation by tungstate in the model organism Allochromatium vinosum indicated the involvement of a molybdoenzyme, but homologues of the periplasmic molybdopterin-containing SorAB or SorT sulfite dehydrogenases are not encoded in genome-sequenced purple or green sulfur bacteria. However, genes for a membrane-bound polysulfide reductase-like iron-sulfur molybdoprotein (SoeABC) are universally present. The catalytic subunit of the protein is predicted to be oriented towards the cytoplasm. We compared the sulfide- and sulfite-oxidizing capabilities of A. vinosum WT with single mutants deficient in SoeABC or APS reductase and the respective double mutant, and were thus able to prove that SoeABC is the major sulfite-oxidizing enzyme in A. vinosum and probably also in other phototrophic sulfur bacteria. The genes also occur in a large number of chemotrophs, indicating a general importance of SoeABC for sulfite oxidation in the cytoplasm. Furthermore, we showed that the periplasmic sulfur substrate-binding protein SoxYZ is needed in parallel to the cytoplasmic enzymes for effective sulfite oxidation in A. vinosum and provided a model for the interplay between these systems despite their localization in different cellular compartments. << Less
Microbiology 159:2626-2638(2013) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.