Reaction participants Show >> << Hide
- Name help_outline S-methyl-5-thio-D-ribulose 1-phosphate Identifier CHEBI:58548 (Beilstein: 11409869) help_outline Charge -2 Formula C6H11O7PS InChIKeyhelp_outline CNSJRYUMVMWNMC-RITPCOANSA-L SMILEShelp_outline CSC[C@@H](O)[C@@H](O)C(=O)COP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 5 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 2-(methylsulfanyl)acetaldehyde Identifier CHEBI:141184 (CAS: 23328-62-3) help_outline Charge 0 Formula C3H6OS InChIKeyhelp_outline NCNSBFDGXBKAKB-UHFFFAOYSA-N SMILEShelp_outline [H]C(CSC)=O 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline dihydroxyacetone phosphate Identifier CHEBI:57642 (Beilstein: 4428349) help_outline Charge -2 Formula C3H5O6P InChIKeyhelp_outline GNGACRATGGDKBX-UHFFFAOYSA-L SMILEShelp_outline C(CO)(COP([O-])(=O)[O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 41 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:56940 | RHEA:56941 | RHEA:56942 | RHEA:56943 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
MetaCyc help_outline |
Publications
-
A bifunctional salvage pathway for two distinct S-adenosylmethionine by-products that is widespread in bacteria, including pathogenic Escherichia coli.
North J.A., Wildenthal J.A., Erb T.J., Evans B.S., Byerly K.M., Gerlt J.A., Tabita F.R.
S-adenosyl-l-methionine (SAM) is a necessary cosubstrate for numerous essential enzymatic reactions including protein and nucleotide methylations, secondary metabolite synthesis and radical-mediated processes. Radical SAM enzymes produce 5'-deoxyadenosine, and SAM-dependent enzymes for polyamine, ... >> More
S-adenosyl-l-methionine (SAM) is a necessary cosubstrate for numerous essential enzymatic reactions including protein and nucleotide methylations, secondary metabolite synthesis and radical-mediated processes. Radical SAM enzymes produce 5'-deoxyadenosine, and SAM-dependent enzymes for polyamine, neurotransmitter and quorum sensing compound synthesis produce 5'-methylthioadenosine as by-products. Both are inhibitory and must be addressed by all cells. This work establishes a bifunctional oxygen-independent salvage pathway for 5'-deoxyadenosine and 5'-methylthioadenosine in both Rhodospirillum rubrum and Extraintestinal Pathogenic Escherichia coli. Homologous genes for this pathway are widespread in bacteria, notably pathogenic strains within several families. A phosphorylase (Rhodospirillum rubrum) or separate nucleoside and kinase (Escherichia coli) followed by an isomerase and aldolase sequentially function to salvage these two wasteful and inhibitory compounds into adenine, dihydroxyacetone phosphate and acetaldehyde or (2-methylthio)acetaldehyde during both aerobic and anaerobic growth. Both SAM by-products are metabolized with equal affinity during aerobic and anaerobic growth conditions, suggesting that the dual-purpose salvage pathway plays a central role in numerous environments, notably the human body during infection. Our newly discovered bifunctional oxygen-independent pathway, widespread in bacteria, salvages at least two by-products of SAM-dependent enzymes for carbon and sulfur salvage, contributing to cell growth. << Less
Mol. Microbiol. 113:923-937(2020) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Microbial pathway for anaerobic 5'-methylthioadenosine metabolism coupled to ethylene formation.
North J.A., Miller A.R., Wildenthal J.A., Young S.J., Tabita F.R.
Numerous cellular processes involving <i>S</i>-adenosyl-l-methionine result in the formation of the toxic by-product, 5'-methylthioadenosine (MTA). To prevent inhibitory MTA accumulation and retain biologically available sulfur, most organisms possess the "universal" methionine salvage pathway (MS ... >> More
Numerous cellular processes involving <i>S</i>-adenosyl-l-methionine result in the formation of the toxic by-product, 5'-methylthioadenosine (MTA). To prevent inhibitory MTA accumulation and retain biologically available sulfur, most organisms possess the "universal" methionine salvage pathway (MSP). However, the universal MSP is inherently aerobic due to a requirement of molecular oxygen for one of the key enzymes. Here, we report the presence of an exclusively anaerobic MSP that couples MTA metabolism to ethylene formation in the phototrophic bacteria <i>Rhodospirillum rubrum</i> and <i>Rhodopseudomonas palustris</i> In vivo metabolite analysis of gene deletion strains demonstrated that this anaerobic MSP functions via sequential action of MTA phosphorylase (MtnP), 5-(methylthio)ribose-1-phosphate isomerase (MtnA), and an annotated class II aldolase-like protein (Ald2) to form 2-(methylthio)acetaldehyde as an intermediate. 2-(Methylthio)acetaldehyde is reduced to 2-(methylthio)ethanol, which is further metabolized as a usable organic sulfur source, generating stoichiometric amounts of ethylene in the process. Ethylene induction experiments using 2-(methylthio)ethanol versus sulfate as sulfur sources further indicate anaerobic ethylene production from 2-(methylthio)ethanol requires protein synthesis and that this process is regulated. Finally, phylogenetic analysis reveals that the genes corresponding to these enzymes, and presumably the pathway, are widespread among anaerobic and facultatively anaerobic bacteria from soil and freshwater environments. These results not only establish the existence of a functional, exclusively anaerobic MSP, but they also suggest a possible route by which ethylene is produced by microbes in anoxic environments. << Less
Proc. Natl. Acad. Sci. U.S.A. 114:E10455-E10464(2017) [PubMed] [EuropePMC]