Reaction participants Show >> << Hide
- Name help_outline an aldehyde Identifier CHEBI:17478 Charge 0 Formula CHOR SMILEShelp_outline [H]C([*])=O 2D coordinates Mol file for the small molecule Search links Involved in 932 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline A Identifier CHEBI:13193 Charge Formula R SMILEShelp_outline * 2D coordinates Mol file for the small molecule Search links Involved in 2,883 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,264 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline a carboxylate Identifier CHEBI:29067 Charge -1 Formula CO2R SMILEShelp_outline [O-]C([*])=O 2D coordinates Mol file for the small molecule Search links Involved in 5,907 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline AH2 Identifier CHEBI:17499 Charge 0 Formula RH2 SMILEShelp_outline *([H])[H] 2D coordinates Mol file for the small molecule Search links Involved in 2,812 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:56856 | RHEA:56857 | RHEA:56858 | RHEA:56859 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline | ||||
EcoCyc help_outline |
Related reactions help_outline
Specific form(s) of this reaction
Publications
-
Biochemical/spectroscopic characterization and preliminary X-ray analysis of a new aldehyde oxidoreductase isolated from Desulfovibrio desulfuricans ATCC 27774.
Duarte R.O., Archer M., Dias J.M., Bursakov S., Huber R., Moura I., Romao M.J., Moura J.J.
Aldehyde oxidoreductase (AOR) activity has been found in different sulfate reducing organisms (Moura, J. J. G., and Barata, B. A. S. (1994) in Methods in Enzymology (Peck, H. D., Jr., and LeGall, J., Eds.), Vol. 243, Chap. 4. Academic Press; Romão, M. J., Knäblein, J., Huber, R., and Moura, J. J. ... >> More
Aldehyde oxidoreductase (AOR) activity has been found in different sulfate reducing organisms (Moura, J. J. G., and Barata, B. A. S. (1994) in Methods in Enzymology (Peck, H. D., Jr., and LeGall, J., Eds.), Vol. 243, Chap. 4. Academic Press; Romão, M. J., Knäblein, J., Huber, R., and Moura, J. J. G. (1997) Prog. Biophys. Mol. Biol. 68, 121-144). The enzyme was purified to homogeneity from extracts of Desulfovibrio desulfuricans (Dd) ATCC 27774, a sulfate reducer that can use sulfate or nitrate as terminal respiratory substrates. The protein (AORDd) is described as a homodimer (monomer, circa 100 kDa), contains a Mo-MCD pterin, 2 x [2Fe-2S] clusters, and lacks a flavin group. Visible and EPR spectroscopies indicate a close similarity with the AOR purified from Desulfovibrio gigas (Dg) (Barata, B. A. S., LeGall, J., and Moura, J. J. G. (1993) Biochemistry 32, 11559-11568). Activity and substrate specificity for different aldehydes were determined. EPR studies were performed in native and reduced states of the enzyme and after treatment with ethylene glycol and dithiothreitol. The AORDd was crystallized using ammonium sulfate as precipitant and the crystals belong to the space group P6(1)22, with unit cell dimensions a = b = 156.4 and c = 177.1 A. These crystals diffract to beyond 2.5 A resolution and a full data set was measured on a rotating anode generator. The data were used to solve the structure by Patterson Search methods, using the model of AORDg. << Less
Biochem Biophys Res Commun 268:745-749(2000) [PubMed] [EuropePMC]
-
Aldehyde oxidoreductase activity in Desulfovibrio alaskensis NCIMB 13491 EPR assignment of the proximal [2Fe-2S] cluster to the Mo site.
Andrade S.L., Brondino C.D., Feio M.J., Moura I., Moura J.J.
A novel molybdenum iron-sulfur-containing aldehyde oxidoreductase (AOR) belonging to the xanthine oxidase family was isolated and characterized from the sulfate-reducing bacterium Desulfovibrio alaskensis NCIMB 13491, a strain isolated from a soured oil reservoir in Purdu Bay, Alaska. D. alaskensi ... >> More
A novel molybdenum iron-sulfur-containing aldehyde oxidoreductase (AOR) belonging to the xanthine oxidase family was isolated and characterized from the sulfate-reducing bacterium Desulfovibrio alaskensis NCIMB 13491, a strain isolated from a soured oil reservoir in Purdu Bay, Alaska. D. alaskensis AOR is closely related to other AORs isolated from the Desulfovibrio genus. The protein is a 97-kDa homodimer, with 0.6 +/- 0.1 Mo, 3.6 +/- 0.1 Fe and 0.9 +/-0.1 pterin cytosine dinucleotides per monomer. The enzyme catalyses the oxidation of aldehydes to their carboxylic acid form, following simple Michaelis-Menten kinetics, with the following parameters (for benzaldehyde): K(app/m)= 6.65 microM; V app = 13.12 microM.min(-1); k(app/cat) = 0.96 s(-1). Three different EPR signals were recorded upon long reduction of the protein with excess dithionite: an almost axial signal split by hyperfine interaction with one proton associated with Mo(V) species and two rhombic signals with EPR parameters and relaxation behavior typical of [2Fe-2S] clusters termed Fe/S I and Fe/S II, respectively. EPR results reveal the existence of magnetic interactions between Mo(V) and one of the Fe/S clusters, as well as between the two Fe/S clusters. Redox titration monitored by EPR yielded midpoint redox potentials of -275 and -325 mV for the Fe/S I and Fe/S II, respectively. The redox potential gap between the two clusters is large enough to obtain differentiated populations of these paramagnetic centers. This fact, together with the observed interactions among paramagnetic centers, was used to assign the EPR-distinguishable Fe/S I and Fe/S II to those seen in the reported crystal structures of homologous enzymes. << Less
-
Carboxylic acid reductase: a new tungsten enzyme catalyses the reduction of non-activated carboxylic acids to aldehydes.
White H., Strobl G., Feicht R., Simon H.
An enzyme which we call carboxylic acid reductase (aldehyde dehydrogenase) seems to be the first which is able to reduce non-activated carboxylic acids to aldehydes at the expense of reduced viologens. There is no further reduction of the aldehydes to the corresponding alcohols. In the presence of ... >> More
An enzyme which we call carboxylic acid reductase (aldehyde dehydrogenase) seems to be the first which is able to reduce non-activated carboxylic acids to aldehydes at the expense of reduced viologens. There is no further reduction of the aldehydes to the corresponding alcohols. In the presence of oxidized viologens aldehydes can be dehydrogenated to carboxylic acids roughly 20 times faster than the latter are reduced. The specific enzyme activity in crude extracts is about 100 times increased if 10 microM tungstate and a sulphur source in addition to sulphate is given to the growth medium of Clostridium thermoaceticum. Carboxylic acid reductase seems to be present in two forms. One has an apparent molecular mass of about 240 kDa and is bound to red-Sepharose, whereas, the other, a form of an apparent molecular mass of about 60 kDa, is not bound. SDS gel electrophoresis shows a higher complexity. The very labile enzyme has been enriched by a factor of about 145 by binding to octyl-Sepharose and further chromatographic separation by red-Sepharose and FPLC using Mono-Q and phenyl-Superose columns. After cell growth in the presence of [185W]tungstate, radioactivity coincides with the two forms of enzyme activity during all purification steps. This is also the case when the enzyme is electrophoretically separated on polyacrylamide slab gels. << Less
Eur J Biochem 184:89-96(1989) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Purification and characterization of an aldehyde oxidase from Pseudomonas sp. KY 4690.
Uchida H., Kondo D., Yamashita A., Nagaosa Y., Sakurai T., Fujii Y., Fujishiro K., Aisaka K., Uwajima T.
An aldehyde oxidase, which oxidizes various aliphatic and aromatic aldehydes using O(2) as an electron acceptor, was purified from the cell-free extracts of Pseudomonas sp. KY 4690, a soil isolate, to an electrophoretically homogeneous state. The purified enzyme had a molecular mass of 132 kDa and ... >> More
An aldehyde oxidase, which oxidizes various aliphatic and aromatic aldehydes using O(2) as an electron acceptor, was purified from the cell-free extracts of Pseudomonas sp. KY 4690, a soil isolate, to an electrophoretically homogeneous state. The purified enzyme had a molecular mass of 132 kDa and consisted of three non-identical subunits with molecular masses of 88, 39, and 18 kDa. The absorption spectrum of the purified enzyme showed characteristics of an enzyme belonging to the xanthine oxidase family. The enzyme contained 0.89 mol of flavin adenine dinucleotide, 1.0 mol of molybdenum, 3.6 mol of acid-labile sulfur, and 0.90 mol of 5'-CMP per mol of enzyme protein, on the basis of its molecular mass of 145 kDa. Molecular oxygen served as the sole electron acceptor. These results suggest that aldehyde oxidase from Pseudomonas sp. KY 4690 is a new member of the xanthine oxidase family and might contain 1 mol of molybdenum-molybdpterin-cytosine dinucleotide, 1 mol of flavin adenine dinucleotide, and 2 mol of [2Fe-2S] clusters per mol of enzyme protein. The enzyme showed high reaction rates toward various aliphatic and aromatic aldehydes and high thermostability. << Less
FEMS Microbiol Lett 229:31-36(2003) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Crystal structure of the xanthine oxidase-related aldehyde oxido-reductase from D. gigas.
Romao M.J., Archer M., Moura I., Moura J.J.G., LeGall J., Engh R., Schneider M., Hof P., Huber R.
The crystal structure of the aldehyde oxido-reductase (Mop) from the sulfate reducing anaerobic Gram-negative bacterium Desulfovibrio gigas has been determined at 2.25 A resolution by multiple isomorphous replacement and refined. The protein, a homodimer of 907 amino acid residues subunits, is a m ... >> More
The crystal structure of the aldehyde oxido-reductase (Mop) from the sulfate reducing anaerobic Gram-negative bacterium Desulfovibrio gigas has been determined at 2.25 A resolution by multiple isomorphous replacement and refined. The protein, a homodimer of 907 amino acid residues subunits, is a member of the xanthine oxidase family. The protein contains a molybdopterin cofactor (Mo-co) and two different [2Fe-2S] centers. It is folded into four domains of which the first two bind the iron sulfur centers and the last two are involved in Mo-co binding. Mo-co is a molybdenum molybdopterin cytosine dinucleotide. Molybdopterin forms a tricyclic system with the pterin bicycle annealed to a pyran ring. The molybdopterin dinucleotide is deeply buried in the protein. The cis-dithiolene group of the pyran ring binds the molybdenum, which is coordinated by three more (oxygen) ligands. << Less