Enzymes
UniProtKB help_outline | 5 proteins |
Reaction participants Show >> << Hide
- Name help_outline ATP Identifier CHEBI:30616 (Beilstein: 3581767) help_outline Charge -4 Formula C10H12N5O13P3 InChIKeyhelp_outline ZKHQWZAMYRWXGA-KQYNXXCUSA-J SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,280 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
cob(I)alamin-[corrinoid adenosyltransferase]
Identifier
RHEA-COMP:14744
Reactive part
help_outline
- Name help_outline cob(I)alamin Identifier CHEBI:60488 Charge -1 Formula C62H88CoN13O14P InChIKeyhelp_outline OMAOKVYASDIYQG-DSRCUDDDSA-L SMILEShelp_outline [H][C@]12[C@H](CC(N)=O)[C@@]3(C)CCC(=O)NC[C@@H](C)OP([O-])(=O)O[C@H]4[C@@H](O)[C@H](O[C@@H]4CO)n4c[n+](c5cc(C)c(C)cc45)[Co-4]456N1C3=C(C)C1=[N+]4C(=CC3=[N+]5C(=C(C)C4=[N+]6[C@]2(C)[C@@](C)(CC(N)=O)[C@@H]4CCC(N)=O)[C@@](C)(CC(N)=O)[C@@H]3CCC(N)=O)C(C)(C)[C@@H]1CCC(N)=O 2D coordinates Mol file for the small molecule Search links Involved in 8 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline an L-α amino acid residue Identifier CHEBI:83228 Charge 0 Formula C2H2NOR SMILEShelp_outline [*][C@H](N-*)C(-*)=O 2D coordinates Mol file for the small molecule Search links Involved in 551 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline adenosylcob(III)alamin Identifier CHEBI:18408 (Beilstein: 4122932; CAS: 13870-90-1) help_outline Charge 0 Formula C72H100CoN18O17P InChIKeyhelp_outline ZIHHMGTYZOSFRC-OUCXYWSSSA-L SMILEShelp_outline [H][C@]12[C@H](CC(N)=O)[C@@]3(C)CCC(=O)NC[C@@H](C)OP([O-])(=O)O[C@@H]4[C@@H](CO)O[C@@H]([C@@H]4O)n4c[n+](c5cc(C)c(C)cc45)[Co-3]456(C[C@H]7O[C@H]([C@H](O)[C@@H]7O)n7cnc8c(N)ncnc78)N1C3=C(C)C1=[N+]4C(=CC3=[N+]5C(=C(C)C4=[N+]6[C@]2(C)[C@@](C)(CC(N)=O)[C@@H]4CCC(N)=O)[C@@](C)(CC(N)=O)[C@@H]3CCC(N)=O)C(C)(C)[C@@H]1CCC(N)=O 2D coordinates Mol file for the small molecule Search links Involved in 7 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
apo-[corrinoid adenosyltransferase]
Identifier
RHEA-COMP:14743
Reactive part
help_outline
- Name help_outline an L-α amino acid residue Identifier CHEBI:83228 Charge 0 Formula C2H2NOR SMILEShelp_outline [*][C@H](N-*)C(-*)=O 2D coordinates Mol file for the small molecule Search links Involved in 551 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline triphosphate Identifier CHEBI:18036 (CAS: 14127-68-5) help_outline Charge -5 Formula O10P3 InChIKeyhelp_outline UNXRWKVEANCORM-UHFFFAOYSA-I SMILEShelp_outline [O-]P([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 18 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:56796 | RHEA:56797 | RHEA:56798 | RHEA:56799 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
MetaCyc help_outline | ||||
EcoCyc help_outline |
Publications
-
Enzymatic conversion of vitamin B-12s to a cobamide coenzyme, alpha-(5,6-dimethylbenzimidazolyl)deoxyadenosylcobamide (adenosyl-B-12).
Vitols E., Walker G.A., Huennekens F.M.
J Biol Chem 241:1455-1461(1966) [PubMed] [EuropePMC]
This publication is cited by 11 other entries.
-
Dihydroflavin-driven adenosylation of 4-coordinate Co(II) corrinoids: are cobalamin reductases enzymes or electron transfer proteins?
Mera P.E., Escalante-Semerena J.C.
The identity of the source of the biological reductant needed to convert cobalamin to its biologically active form adenosylcobalamin has remained elusive. Here we show that free or protein-bound dihydroflavins can serve as the reductant of Co(2+)Cbl bound in the active site of PduO-type ATP-depend ... >> More
The identity of the source of the biological reductant needed to convert cobalamin to its biologically active form adenosylcobalamin has remained elusive. Here we show that free or protein-bound dihydroflavins can serve as the reductant of Co(2+)Cbl bound in the active site of PduO-type ATP-dependent corrinoid adenosyltransferase enzymes. Free dihydroflavins (dihydroriboflavin, FMNH(2), and FADH(2)) effectively drove the adenosylation of Co(2+)Cbl by the human and bacterial PduO-type enzymes at very low concentrations (1 microm). These data show that adenosyltransferase enzymes lower the thermodynamic barrier of the Co(2+) --> Co(+) reduction needed for the formation of the unique organometalic Co-C bond of adenosylcobalamin. Collectively, our in vivo and in vitro data suggest that cobalamin reductases identified thus far are most likely electron transfer proteins, not enzymes. << Less
J. Biol. Chem. 285:2911-2917(2010) [PubMed] [EuropePMC]
This publication is cited by 10 other entries.
-
Three-dimensional structure of ATP:corrinoid adenosyltransferase from Salmonella typhimurium in its free state, complexed with MgATP, or complexed with hydroxycobalamin and MgATP.
Bauer C.B., Fonseca M.V., Holden H.M., Thoden J.B., Thompson T.B., Escalante-Semerena J.C., Rayment I.
In Salmonella typhimurium, formation of the cobalt-carbon bond in the biosynthetic pathway for adenosylcobalamin is catalyzed by the product of the cobA gene which encodes a protein of 196 amino acid residues. This enzyme is an ATP:co(I)rrinoid adenosyltransferase which transfers an adenosyl moiet ... >> More
In Salmonella typhimurium, formation of the cobalt-carbon bond in the biosynthetic pathway for adenosylcobalamin is catalyzed by the product of the cobA gene which encodes a protein of 196 amino acid residues. This enzyme is an ATP:co(I)rrinoid adenosyltransferase which transfers an adenosyl moiety from MgATP to a broad range of co(I)rrinoid substrates that are believed to include cobinamide, its precursor cobyric acid and probably others as yet unidentified, and hydroxocobalamin. Three X-ray structures of CobA are reported here: its substrate-free form, a complex of CobA with MgATP, and a ternary complex of CobA with MgATP and hydroxycobalamin to 2.1, 1.8, and 2.1 A resolution, respectively. These structures show that the enzyme is a homodimer. In the apo structure, the polypeptide chain extends from Arg(28) to Lys(181) and consists of an alpha/beta structure built from a six-stranded parallel beta-sheet with strand order 324516. The topology of this fold is very similar to that seen in RecA protein, helicase domain, F(1)ATPase, and adenosylcobinamide kinase/adenosylcobinamide guanylyltransferase where a P-loop is located at the end of the first strand. Strikingly, the nucleotide in the MgATP.CobA complex binds to the P-loop of CobA in the opposite orientation compared to all the other nucleotide hydrolases. That is, the gamma-phosphate binds at the location normally occupied by the alpha-phosphate. The unusual orientation of the nucleotide arises because this enzyme transfers an adenosyl group rather than the gamma-phosphate. In the ternary complex, the binding site for hydroxycobalamin is located in a shallow bowl-shaped depression at the C-terminal end of the beta-sheet of one subunit; however, the active site is capped by the N-terminal helix from the symmetry-related subunit that now extends from Gln(7) to Ala(24). The lower ligand of cobalamin is well-ordered and interacts mostly with the N-terminal helix of the symmetry-related subunit. Interestingly, there are few interactions between the protein and the polar side chains of the corrin ring which accounts for the broad specificity of this enzyme. The corrin ring is oriented such that the cobalt atom is located approximately 6.1 A from C5' of the ribose and is beyond the range of nucleophilic attack. This suggests that a conformational change occurs in the ternary complex when Co(III) is reduced to Co(I). << Less
Biochemistry 40:361-374(2001) [PubMed] [EuropePMC]
This publication is cited by 11 other entries.
-
Purification and initial characterization of the ATP:corrinoid adenosyltransferase encoded by the cobA gene of Salmonella typhimurium.
Suh S.-J., Escalante-Semerena J.C.
The cobA gene of Salmonella typhimurium and its product were overexpressed to approximately 20% of the total cell protein. CobA was purified to 98% homogeneity; N-terminal sequence analysis (21 residues) of homogeneous protein confirmed the predicted amino acid sequence. ATP:corrinoid adenosyltran ... >> More
The cobA gene of Salmonella typhimurium and its product were overexpressed to approximately 20% of the total cell protein. CobA was purified to 98% homogeneity; N-terminal sequence analysis (21 residues) of homogeneous protein confirmed the predicted amino acid sequence. ATP:corrinoid adenosyltransferase activity was demonstrated in vitro to be associated with CobA. This activity was optimal at pH 8 and 37 degrees C. A quantitative preference was determined for Mn(II) cations and ATP. The apparent Km of CobA for ATP was 2.8 microM, and that for cob(I)alamin was 5.2 microM. Vmax was measured at 0.43 nmol/min. Cobinamide served as the substrate for CobA to yield adenosylcobinamide. Activity was stable at 4 degrees C for several weeks but was lost rapidly at room temperature (50% overnight). Dithiothreitol was required to maintain the enzymatic activity of CobA. << Less
J. Bacteriol. 177:921-925(1995) [PubMed] [EuropePMC]
This publication is cited by 11 other entries.
-
Reduction of Cob(III)alamin to Cob(II)alamin in Salmonella enterica serovar typhimurium LT2.
Fonseca M.V., Escalante-Semerena J.C.
Reduction of the cobalt ion of cobalamin from the Co(III) to the Co(I) oxidation state is essential for the synthesis of adenosylcobalamin, the coenzymic form of this cofactor. A cob(II)alamin reductase activity in Salmonella enterica serovar Typhimurium LT2 was isolated to homogeneity. N-terminal ... >> More
Reduction of the cobalt ion of cobalamin from the Co(III) to the Co(I) oxidation state is essential for the synthesis of adenosylcobalamin, the coenzymic form of this cofactor. A cob(II)alamin reductase activity in Salmonella enterica serovar Typhimurium LT2 was isolated to homogeneity. N-terminal analysis of the homogeneous protein identified NAD(P)H:flavin oxidoreductase (Fre) (EC 1.6.8.1) as the enzyme responsible for this activity. The fre gene was cloned, and the overexpressed protein, with a histidine tag at its N terminus, was purified to homogeneity by nickel affinity chromatography. His-tagged Fre reduced flavins (flavin mononucleotide [FMN] and flavin adenine dinucleotide [FAD]) and cob(III)alamin to cob(II)alamin very efficiently. Photochemically reduced FMN substituted for Fre in the reduction of cob(III)alamin to cob(II)alamin, indicating that the observed cobalamin reduction activity was not Fre dependent but FMNH(2) dependent. Enzyme-independent reduction of cob(III)alamin to cob(II)alamin by FMNH(2) occurred at a rate too fast to be measured. The thermodynamically unfavorable reduction of cob(II)alamin to cob(I)alamin was detectable by alkylation of the cob(I)alamin nucleophile with iodoacetate. Detection of the product, caboxymethylcob(III)alamin, depended on the presence of FMNH(2) in the reaction mixture. FMNH(2) failed to substitute for potassium borohydride in in vitro assays for corrinoid adenosylation catalyzed by the ATP:co(I)rrinoid adenosyltransferase (CobA) enzyme, even under conditions where Fre and NADH were present in the reaction mixture to ensure that FMN was always reduced. These results were interpreted to mean that Fre was not responsible for the generation of cob(I)alamin in vivo. Consistent with this idea, a fre mutant displayed wild-type cobalamin biosynthetic phenotypes. It is proposed that S. enterica serovar Typhimurium LT2 may not have a cob(III)alamin reductase enzyme and that, in vivo, nonadenosylated cobalamin and other corrinoids are maintained as co(II)rrinoids by reduced flavin nucleotides generated by Fre and other flavin oxidoreductases. << Less
J. Bacteriol. 182:4304-4309(2000) [PubMed] [EuropePMC]
This publication is cited by 10 other entries.
-
An in vitro reducing system for the enzymic conversion of cobalamin to adenosylcobalamin.
Fonseca M.V., Escalante-Semerena J.C.
Homogeneous ferredoxin (flavodoxin):NADP(+) reductase and flavodoxin A proteins served as electron donors for the reduction of co(III)rrinoids to co(I)rrinoids in vitro. The resulting co(I)rrinoids served as substrates for the ATP:co(I)rrinoid adenosyltransferase (CobA) enzyme of Salmonella enteri ... >> More
Homogeneous ferredoxin (flavodoxin):NADP(+) reductase and flavodoxin A proteins served as electron donors for the reduction of co(III)rrinoids to co(I)rrinoids in vitro. The resulting co(I)rrinoids served as substrates for the ATP:co(I)rrinoid adenosyltransferase (CobA) enzyme of Salmonella enterica serovar Typhimurium LT2 and were converted to their respective adenosylated derivatives. The reaction products were isolated by reverse phase high performance liquid chromatography, and their identities were confirmed by UV-visible spectroscopy, mass spectrometry, and in vivo biological activity assays. Adenosylcobalamin generated by this system supported the activity of 1,2-propanediol dehydratase as effectively as authentic adenosylcobalamin. This is the first report of a protein system that can be coupled to the adenosyltransferase CobA enzyme for the conversion of co(III)rrinoids to their adenosylated derivatives. << Less
J. Biol. Chem. 276:32101-32108(2001) [PubMed] [EuropePMC]
This publication is cited by 11 other entries.
Comments
RHEA:56796 part-of RHEA:28671 RHEA:56796 part of RHEA:66828