Reaction participants Show >> << Hide
- Name help_outline nitrate Identifier CHEBI:17632 (Beilstein: 3587575; CAS: 14797-55-8) help_outline Charge -1 Formula NO3 InChIKeyhelp_outline NHNBFGGVMKEFGY-UHFFFAOYSA-N SMILEShelp_outline [O-][N+]([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 26 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline a quinol Identifier CHEBI:24646 Charge 0 Formula C6H2O2R4 SMILEShelp_outline OC1=C(*)C(*)=C(O)C(*)=C1* 2D coordinates Mol file for the small molecule Search links Involved in 238 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline a quinone Identifier CHEBI:132124 Charge 0 Formula C6O2R4 SMILEShelp_outline O=C1C(*)=C(*)C(=O)C(*)=C1* 2D coordinates Mol file for the small molecule Search links Involved in 127 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline nitrite Identifier CHEBI:16301 (CAS: 14797-65-0) help_outline Charge -1 Formula NO2 InChIKeyhelp_outline IOVCWXUNBOPUCH-UHFFFAOYSA-M SMILEShelp_outline [O-]N=O 2D coordinates Mol file for the small molecule Search links Involved in 79 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,264 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:56144 | RHEA:56145 | RHEA:56146 | RHEA:56147 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Related reactions help_outline
Specific form(s) of this reaction
More general form(s) of this reaction
Publications
-
Structural and biochemical characterization of a quinol binding site of Escherichia coli nitrate reductase A.
Bertero M.G., Rothery R.A., Boroumand N., Palak M., Blasco F., Ginet N., Weiner J.H., Strynadka N.C.
The crystal structure of Escherichia coli nitrate reductase A (NarGHI) in complex with pentachlorophenol has been determined to 2.0 A of resolution. We have shown that pentachlorophenol is a potent inhibitor of quinol:nitrate oxidoreductase activity and that it also perturbs the EPR spectrum of on ... >> More
The crystal structure of Escherichia coli nitrate reductase A (NarGHI) in complex with pentachlorophenol has been determined to 2.0 A of resolution. We have shown that pentachlorophenol is a potent inhibitor of quinol:nitrate oxidoreductase activity and that it also perturbs the EPR spectrum of one of the hemes located in the membrane anchoring subunit (NarI). This new structural information together with site-directed mutagenesis data, biochemical analyses, and molecular modeling provide the first molecular characterization of a quinol binding and oxidation site (Q-site) in NarGHI. A possible proton conduction pathway linked to electron transfer reactions has also been defined, providing fundamental atomic details of ubiquinol oxidation by NarGHI at the bacterial membrane. << Less
-
EPR and redox characterization of iron-sulfur centers in nitrate reductases A and Z from Escherichia coli. Evidence for a high-potential and a low-potential class and their relevance in the electron-transfer mechanism.
Guigliarelli B., Asso M., More C., Augier V., Blasco F., Pommier J., Giordano G., Bertrand P.
The redox properties of the iron-sulfur centers of the two nitrate reductases from Escherichia coli have been investigated by EPR spectroscopy. A detailed study of nitrate reductase A performed in the range +200 mV to -500 mV shows that the four iron-sulfur centers of the enzyme belong to two clas ... >> More
The redox properties of the iron-sulfur centers of the two nitrate reductases from Escherichia coli have been investigated by EPR spectroscopy. A detailed study of nitrate reductase A performed in the range +200 mV to -500 mV shows that the four iron-sulfur centers of the enzyme belong to two classes with markedly different redox potentials. The high-potential group comprises a [3Fe-4S] and a [4Fe-4S] cluster whose midpoint potentials are +60 mV and +80 mV, respectively. Although these centers are magnetically isolated, they are coupled by a significant anticooperative redox interaction of about 50 mV. The [4Fe-4S]1+ center occurs in two different conformations as shown by its composite EPR spectrum. The low-potential group contains two [4Fe-4S] clusters with more typical redox potentials (-200 mV and -400 mV). In the fully reduced state, the three [4Fe-4S]1+ centers are magnetically coupled, leading to a broad featureless spectrum. The redox behaviour of the high-pH EPR signal given by the molybdenum cofactor was also studied. The iron-sulfur centers of the second nitrate reductase of E. coli, nitrate reductase Z, exhibit essentially the same characteristics than those of nitrate reductase A, except that the midpoint potentials of the high-potential centers appear negatively shifted by about 100 mV. From the comparison between the redox centers of nitrate reductase and of dimethylsulfoxide reductase, a correspondence between the high-potential iron-sulfur clusters of the two enzymes can be proposed. << Less
-
Nitrate reductases in Escherichia coli.
Bonnefoy V., Demoss J.A.
Escherichia coli expresses two different membrane-bound respiratory nitrate reductases, nitrate reductase A (NRA) and nitrate reductase Z (NRZ). In this review, we compare the genetic control, biochemical properties and regulation of these two closely related enzyme systems. The two enzymes are en ... >> More
Escherichia coli expresses two different membrane-bound respiratory nitrate reductases, nitrate reductase A (NRA) and nitrate reductase Z (NRZ). In this review, we compare the genetic control, biochemical properties and regulation of these two closely related enzyme systems. The two enzymes are encoded by distinct operons located within two different loci on the E. coli chromosome. The narGHJI operon, encoding nitrate reductaseA, is located in the chlC locus at 27 minutes, along with several functionally related genes: narK, encoding a nitrate/nitrite antiporter, and the narXL operon, encoding a nitrate-activated, two component regulatory system. The narZYWV operon, encoding nitrate reductase Z, is located in the chlZ locus located at 32.5 minutes, a region which includes a narK homologue, narU, but no apparent homologue to the narXL operon. The two membrane-bound enzymes have similar structures and biochemical properties and are capable of reducing nitrate using normal physiological substrates. The homology of the amino acid sequences of the peptides encoded by the two operons is extremely high but the intergenic regions share no related sequences. The expression of both the narGHJI operon and the narK gene are positively regulated by two transacting factors Fnr and NarL-Phosphate, activated respectively by anaerobiosis and nitrate, while the narZYWV operon and the narU gene are constitutively expressed. Nitrate reductase A, which accounts for 98% of the nitrate reductase activity when fully induced, is clearly the major respiratory nitrate reductase in E. coli while the physiological role of the constitutively expressed nitrate reductase Z remains to be defined. << Less
-
Purification and further characterization of the second nitrate reductase of Escherichia coli K12.
Iobbi-Nivol C., Santini C.L., Blasco F., Giordano G.
Two nitrate reductases, nitrate reductase A and nitrate reductase Z, exist in Escherichia coli. The nitrate reductase Z enzyme has been purified from the membrane fraction of a strain which is deleted for the operon encoding the nitrate reductase A enzyme and which harbours a multicopy plasmid car ... >> More
Two nitrate reductases, nitrate reductase A and nitrate reductase Z, exist in Escherichia coli. The nitrate reductase Z enzyme has been purified from the membrane fraction of a strain which is deleted for the operon encoding the nitrate reductase A enzyme and which harbours a multicopy plasmid carrying the nitrate reductase Z structural genes; it was purified 219 times with a yield of about 11%. It is an Mr-230,000 complex containing 13 atoms iron and 12 atoms labile sulfur/molecule. The presence of a molybdopterin cofactor in the nitrate reductase Z complex was demonstrated by reconstitution experiments of the molybdenum-cofactor-deficient NADPH-dependent nitrate reductase activity from a Neurospora crassa nit-1 mutant and by fluorescence emission and excitation spectra of stable derivatives of molybdoterin extracted from the purified enzyme. Both nitrate reductases share common properties such as relative molecular mass, subunit composition and electron donors and acceptors. Nevertheless, they diverge by two properties: their electrophoretic migrations are very different (RF of 0.38 for nitrate reductase Z versus 0.23 for nitrate reductase A), as are their susceptibilities to trypsin. An immunological study performed with a serum raised against nitrate reductase Z confirmed the existence of common epitopes in both complexes but unambiguously demonstrated the presence of specific determinants in nitrate reductase Z. Furthermore, it revealed a peculiar aspect of the regulation of both nitrate reductases: the nitrate reductase A enzyme is repressed by oxygen, strongly inducible by nitrate and positively controlled by the fnr gene product; on the contrary, the nitrate reductase Z enzyme is produced aerobically, barely induced by nitrate and repressed by the fnr gene product in anaerobiosis. << Less
-
Insights into the respiratory electron transfer pathway from the structure of nitrate reductase A.
Bertero M.G., Rothery R.A., Palak M., Hou C., Lim D., Blasco F., Weiner J.H., Strynadka N.C.J.
The facultative anaerobe Escherichia coli is able to assemble specific respiratory chains by synthesis of appropriate dehydrogenases and reductases in response to the availability of specific substrates. Under anaerobic conditions in the presence of nitrate, E. coli synthesizes the cytoplasmic mem ... >> More
The facultative anaerobe Escherichia coli is able to assemble specific respiratory chains by synthesis of appropriate dehydrogenases and reductases in response to the availability of specific substrates. Under anaerobic conditions in the presence of nitrate, E. coli synthesizes the cytoplasmic membrane-bound quinol-nitrate oxidoreductase (nitrate reductase A; NarGHI), which reduces nitrate to nitrite and forms part of a redox loop generating a proton-motive force. We present here the crystal structure of NarGHI at a resolution of 1.9 A. The NarGHI structure identifies the number, coordination scheme and environment of the redox-active prosthetic groups, a unique coordination of the molybdenum atom, the first structural evidence for the role of an open bicyclic form of the molybdo-bis(molybdopterin guanine dinucleotide) (Mo-bisMGD) cofactor in the catalytic mechanism and a novel fold of the membrane anchor subunit. Our findings provide fundamental molecular details for understanding the mechanism of proton-motive force generation by a redox loop. << Less
-
The role of a novel cytochrome b-containing nitrate reductase and quinone in the in vitro reconstruction of formate-nitrate reductase activity of E. coli.
Enoch H.G., Lester R.L.
Biochem Biophys Res Commun 61:1234-1241(1974) [PubMed] [EuropePMC]
-
High-stability semiquinone intermediate in nitrate reductase A (NarGHI) from Escherichia coli is located in a quinol oxidation site close to heme bD.
Lanciano P., Magalon A., Bertrand P., Guigliarelli B., Grimaldi S.
Quinol/nitrate oxidoreductase (NarGHI) is the first enzyme involved in respiratory denitrification in prokaryotes. Although this complex in E. coli is known to operate with both ubi and menaquinones, the location and the number of quinol binding sites remain elusive. NarGHI strongly stabilizes a s ... >> More
Quinol/nitrate oxidoreductase (NarGHI) is the first enzyme involved in respiratory denitrification in prokaryotes. Although this complex in E. coli is known to operate with both ubi and menaquinones, the location and the number of quinol binding sites remain elusive. NarGHI strongly stabilizes a semiquinone radical located within the dihemic anchor subunit NarI. To identify its location and function, we used a combination of mutagenesis, kinetics, EPR, and ENDOR spectroscopies. For the NarGHIH66Y and NarGHIH187Y mutants lacking the distal heme bD, no EPR signal of the semiquinone was observed. In contrast, a semiquinone was detected in the NarGHIH56Y mutant lacking the proximal heme bP. Its thermodynamic properties and spectroscopic characteristics, as revealed by Q-band EPR and ENDOR spectroscopies, are identical to those observed in the native enzyme. The substitution by Ala of the Lys86 residue close to heme bD, which was previously proposed to be in a quinol oxidation site of NarGHI (QD), also leads to the loss of the EPR signal of the semiquinone, although both hemes are present. Enzymatic assays carried out on the NarGHIK86A mutant reveal that the substitution dramatically reduces the rate of oxidation of both mena and ubiquinol analogues. These observations demonstrate that the semiquinone observed in NarI is strongly associated with heme bD and that Lys86 is required for its stabilization. Overall, our results indicate that the semiquinone is located within the quinol oxidation site QD. Details of the possible binding motif of the semiquinone and mechanistic implications are discussed. << Less