Reaction participants Show >> << Hide
- Name help_outline A Identifier CHEBI:13193 Charge Formula R SMILEShelp_outline * 2D coordinates Mol file for the small molecule Search links Involved in 2,870 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline D-alanine Identifier CHEBI:57416 Charge 0 Formula C3H7NO2 InChIKeyhelp_outline QNAYBMKLOCPYGJ-UWTATZPHSA-N SMILEShelp_outline C[C@@H]([NH3+])C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 24 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (Beilstein: 3587155; CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,204 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline AH2 Identifier CHEBI:17499 Charge 0 Formula RH2 SMILEShelp_outline *([H])[H] 2D coordinates Mol file for the small molecule Search links Involved in 2,799 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NH4+ Identifier CHEBI:28938 (CAS: 14798-03-9) help_outline Charge 1 Formula H4N InChIKeyhelp_outline QGZKDVFQNNGYKY-UHFFFAOYSA-O SMILEShelp_outline [H][N+]([H])([H])[H] 2D coordinates Mol file for the small molecule Search links Involved in 528 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline pyruvate Identifier CHEBI:15361 (Beilstein: 3587721; CAS: 57-60-3) help_outline Charge -1 Formula C3H3O3 InChIKeyhelp_outline LCTONWCANYUPML-UHFFFAOYSA-M SMILEShelp_outline CC(=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 215 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:55948 | RHEA:55949 | RHEA:55950 | RHEA:55951 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
Related reactions help_outline
Specific form(s) of this reaction
More general form(s) of this reaction
Publications
-
Biochemical, genetic, and regulatory studies of alanine catabolism in Escherichia coli K12.
Franklin F.C., Venables W.A.
E. coli K12 was found to utilise both D-and L-stereoisomers of alanine as sole sources of carbon, nitrogen and energy for growth. This capability was absolutely dependent upon the possession of an active membrane-bound D-alanine dehydrogenase, and was lost by mutants in which the enzyme was defect ... >> More
E. coli K12 was found to utilise both D-and L-stereoisomers of alanine as sole sources of carbon, nitrogen and energy for growth. This capability was absolutely dependent upon the possession of an active membrane-bound D-alanine dehydrogenase, and was lost by mutants in which the enzyme was defective. The Michaelis constant for the enzyme with D-alanine as substrate was 30 mM, and the pH optimum about 8.9. D-alanine was the most active substrate, L-alanine was inactive and several other D-amino acids were 10--50% as active as D-alanine. Oxidation of D-alanine was linked to oxygen via a cytochrome-containing respiratory chain. Synthesis of the dehydrogenase was induced 16 to 23-fold by incubation with D- or L-alanine, but only D-alanine was intrinsically active as an inducer. L-alanine was active either as a substrate or inducer only in t he presence of an uninhibited alanine racemase which converted it to the D-isomer. The map-location of their structural genes between ara and leu, together with other similarities, indicate that D-alanine dehydrogenase and the "alaninase" of Wijsman (1972a) are the same enzyme. Both D- and L-alanine were intrinsically active as inducers of alanine racemase synthesis. The synthesis of both D-alanine dehydrogenase and alanine racemase was found to be regulated by catabolite repression. << Less
-
Organization and expression of the Escherichia coli K-12 dad operon encoding the smaller subunit of D-amino acid dehydrogenase and the catabolic alanine racemase.
Lobocka M., Hennig J., Wild J., Klopotowski T.
A fragment of the Escherichia coli K-12 chromosome complementing the D-amino acid dehydrogenase and catabolic alanine racemase deficiency of a dad operon deletion mutant was cloned in a mini-Mu plasmid. The dadA and dadX genes were localized to a 3.5-kb part of the plasmid insert. The nucleotide s ... >> More
A fragment of the Escherichia coli K-12 chromosome complementing the D-amino acid dehydrogenase and catabolic alanine racemase deficiency of a dad operon deletion mutant was cloned in a mini-Mu plasmid. The dadA and dadX genes were localized to a 3.5-kb part of the plasmid insert. The nucleotide sequence of this fragment revealed two open reading frames encoding 432- and 356-amino-acid-long proteins. We show here that they correspond to the dadA and dadX genes. The dadA gene can encode only the smaller of the two subunits of D-amino acid dehydrogenase. A computer search revealed the presence of a flavin adenine dinucleotide-binding motif in the N-terminal domain of the deduced DadA protein sequence. This is in agreement with biochemical data showing that the D-amino acid dehydrogenase contains flavin adenine dinucleotide in its active center. The predicted dadX gene product appeared to be 85% identical to a dadB-encoded catabolic alanine racemase of Salmonella typhimurium. The organization of the dadA and dadX genes confirmed our previous conclusion based on the genetic data (J. Wild, J. Hennig, M. Lobocka, W. Walczak, and T. KÅ‚opotowski, Mol. Gen. Genet. 198:315-322, 1985) that these genes form an operon. The main transcription start points of the dad operon were determined by primer extension. They are preceded by a putative sigma 70 promoter sequence and two cyclic AMP-cyclic AMP receptor protein (cAMP-CRP) binding sites, one of higher and one of lower affinity to CRP. We propose that the high-affinity site, centered 59.5 bp upstream of the main transcription start point, plays a role in cAMP-CRP-mediated activation of dad operon expression in the absence of glucose. << Less
-
Regulation and characterization of the dadRAX locus for D-amino acid catabolism in Pseudomonas aeruginosa PAO1.
He W., Li C., Lu C.D.
D-amino acids are essential components for bacterial peptidoglycan, and these natural compounds are also involved in cell wall remodeling and biofilm disassembling. In Pseudomonas aeruginosa, the dadAX operon, encoding the D-amino acid dehydrogenase DadA and the amino acid racemase DadX, is essent ... >> More
D-amino acids are essential components for bacterial peptidoglycan, and these natural compounds are also involved in cell wall remodeling and biofilm disassembling. In Pseudomonas aeruginosa, the dadAX operon, encoding the D-amino acid dehydrogenase DadA and the amino acid racemase DadX, is essential for D- and L-Ala catabolism, and its expression requires a transcriptional regulator, DadR. In this study, purified recombinant DadA alone was sufficient to demonstrate the proposed enzymatic activity with very broad substrate specificity; it utilizes all D-amino acids tested as substrates except D-Glu and D-Gln. DadA also showed comparable k(cat) and K(m) values on D-Ala and several D-amino acids. dadRAX knockout mutants were constructed and subjected to analysis of their growth phenotypes on amino acids. The results revealed that utilization of L-Ala, L-Trp, D-Ala, and a specific set of D-amino acids as sole nitrogen sources was abolished in the dadA mutant and/or severely hampered in the dadR mutant while growth yield on D-amino acids was surprisingly improved in the dadX mutant. The dadA promoter was induced by several L-amino acids, most strongly by Ala, and only by D-Ala among all tested D-amino acids. Enhanced growth of the dadX mutant on D-amino acids is consistent with the finding that the dadA promoter was constitutively induced in the dadX mutant, where exogenous D-Ala but not L-Ala reduced the expression. Binding of DadR to the dadA regulatory region was demonstrated by electromobility shift assays, and the presence of L-Ala but not D-Ala increased affinity by 3-fold. The presence of multiple DadR-DNA complexes in the dadA regulatory region was demonstrated in vitro, and the formation of these nucleoprotein complexes exerted a complicated impact on promoter activation in vivo. In summary, the results from this study clearly demonstrate DadA to be the enzyme solely responsible for the proposed D-amino acid dehydrogenase activity of broad substrate specificity and the physiological functions of DadRAX in catabolism of several D-amino acids and support L-Ala as the signal molecule for induction of the dadAX genes through DadR binding to several putative operator sites. << Less