Enzymes
UniProtKB help_outline | 5 proteins |
Enzyme class help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline CO2 Identifier CHEBI:16526 (Beilstein: 1900390; CAS: 124-38-9) help_outline Charge 0 Formula CO2 InChIKeyhelp_outline CURLTUGMZLYLDI-UHFFFAOYSA-N SMILEShelp_outline O=C=O 2D coordinates Mol file for the small molecule Search links Involved in 997 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline coenzyme B Identifier CHEBI:58596 Charge -3 Formula C11H19NO7PS InChIKeyhelp_outline JBJSVEVEEGOEBZ-SCZZXKLOSA-K SMILEShelp_outline C[C@@H](OP([O-])([O-])=O)[C@H](NC(=O)CCCCCCS)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 7 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline coenzyme M Identifier CHEBI:58319 Charge -1 Formula C2H5O3S2 InChIKeyhelp_outline ZNEWHQLOPFWXOF-UHFFFAOYSA-M SMILEShelp_outline [O-]S(=O)(=O)CCS 2D coordinates Mol file for the small molecule Search links Involved in 19 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
reduced [2Fe-2S]-[ferredoxin]
Identifier
RHEA-COMP:10001
Reactive part
help_outline
- Name help_outline [2Fe-2S]1+ Identifier CHEBI:33738 Charge 1 Formula Fe2S2 InChIKeyhelp_outline MAGIRAZQQVQNKP-UHFFFAOYSA-N SMILEShelp_outline S1[Fe]S[Fe+]1 2D coordinates Mol file for the small molecule Search links Involved in 238 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline coenzyme M-coenzyme B heterodisulfide Identifier CHEBI:58411 Charge -4 Formula C13H22NO10PS3 InChIKeyhelp_outline OBGQLHXSMIBYLN-PWSUYJOCSA-J SMILEShelp_outline C[C@@H](OP([O-])([O-])=O)[C@H](NC(=O)CCCCCCSSCCS([O-])(=O)=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 7 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline formate Identifier CHEBI:15740 (Beilstein: 1901205; CAS: 71-47-6) help_outline Charge -1 Formula CHO2 InChIKeyhelp_outline BDAGIHXWWSANSR-UHFFFAOYSA-M SMILEShelp_outline [H]C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 97 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
oxidized [2Fe-2S]-[ferredoxin]
Identifier
RHEA-COMP:10000
Reactive part
help_outline
- Name help_outline [2Fe-2S]2+ Identifier CHEBI:33737 Charge 2 Formula Fe2S2 InChIKeyhelp_outline XSOVBBGAMBLACL-UHFFFAOYSA-N SMILEShelp_outline S1[Fe+]S[Fe+]1 2D coordinates Mol file for the small molecule Search links Involved in 238 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:55752 | RHEA:55753 | RHEA:55754 | RHEA:55755 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
Protein complexing in a methanogen suggests electron bifurcation and electron delivery from formate to heterodisulfide reductase.
Costa K.C., Wong P.M., Wang T., Lie T.J., Dodsworth J.A., Swanson I., Burn J.A., Hackett M., Leigh J.A.
In methanogenic Archaea, the final step of methanogenesis generates methane and a heterodisulfide of coenzyme M and coenzyme B (CoM-S-S-CoB). Reduction of this heterodisulfide by heterodisulfide reductase to regenerate HS-CoM and HS-CoB is an exergonic process. Thauer et al. [Thauer, et al. 2008 N ... >> More
In methanogenic Archaea, the final step of methanogenesis generates methane and a heterodisulfide of coenzyme M and coenzyme B (CoM-S-S-CoB). Reduction of this heterodisulfide by heterodisulfide reductase to regenerate HS-CoM and HS-CoB is an exergonic process. Thauer et al. [Thauer, et al. 2008 Nat Rev Microbiol 6:579-591] recently suggested that in hydrogenotrophic methanogens the energy of heterodisulfide reduction powers the most endergonic reaction in the pathway, catalyzed by the formylmethanofuran dehydrogenase, via flavin-based electron bifurcation. Here we present evidence that these two steps in methanogenesis are physically linked. We identify a protein complex from the hydrogenotrophic methanogen, Methanococcus maripaludis, that contains heterodisulfide reductase, formylmethanofuran dehydrogenase, F(420)-nonreducing hydrogenase, and formate dehydrogenase. In addition to establishing a physical basis for the electron-bifurcation model of energy conservation, the composition of the complex also suggests that either H(2) or formate (two alternative electron donors for methanogenesis) can donate electrons to the heterodisulfide-H(2) via F(420)-nonreducing hydrogenase or formate via formate dehydrogenase. Electron flow from formate to the heterodisulfide rather than the use of H(2) as an intermediate represents a previously unknown path of electron flow in methanogenesis. We further tested whether this path occurs by constructing a mutant lacking F(420)-nonreducing hydrogenase. The mutant displayed growth equal to wild-type with formate but markedly slower growth with hydrogen. The results support the model of electron bifurcation and suggest that formate, like H(2), is closely integrated into the methanogenic pathway. << Less
Proc. Natl. Acad. Sci. U.S.A. 107:11050-11055(2010) [PubMed] [EuropePMC]
-
VhuD facilitates electron flow from H2 or formate to heterodisulfide reductase in Methanococcus maripaludis.
Costa K.C., Lie T.J., Xia Q., Leigh J.A.
Flavin-based electron bifurcation has recently been characterized as an essential energy conservation mechanism that is utilized by hydrogenotrophic methanogenic Archaea to generate low-potential electrons in an ATP-independent manner. Electron bifurcation likely takes place at the flavin associat ... >> More
Flavin-based electron bifurcation has recently been characterized as an essential energy conservation mechanism that is utilized by hydrogenotrophic methanogenic Archaea to generate low-potential electrons in an ATP-independent manner. Electron bifurcation likely takes place at the flavin associated with the α subunit of heterodisulfide reductase (HdrA). In Methanococcus maripaludis the electrons for this reaction come from either formate or H2 via formate dehydrogenase (Fdh) or Hdr-associated hydrogenase (Vhu). However, how these enzymes bind to HdrA to deliver electrons is unknown. Here, we present evidence that the δ subunit of hydrogenase (VhuD) is central to the interaction of both enzymes with HdrA. When M. maripaludis is grown under conditions where both Fdh and Vhu are expressed, these enzymes compete for binding to VhuD, which in turn binds to HdrA. Under these conditions, both enzymes are fully functional and are bound to VhuD in substoichiometric quantities. We also show that Fdh copurifies specifically with VhuD in the absence of other hydrogenase subunits. Surprisingly, in the absence of Vhu, growth on hydrogen still occurs; we show that this involves F420-reducing hydrogenase. The data presented here represent an initial characterization of specific protein interactions centered on Hdr in a hydrogenotrophic methanogen that utilizes multiple electron donors for growth. << Less
J. Bacteriol. 195:5160-5165(2013) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.