Enzymes
UniProtKB help_outline | 3 proteins |
Enzyme class help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline ADP-α-D-glucose Identifier CHEBI:57498 Charge -2 Formula C16H23N5O15P2 InChIKeyhelp_outline WFPZSXYXPSUOPY-ROYWQJLOSA-L SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)O[C@H]2O[C@H](CO)[C@@H](O)[C@H](O)[C@H]2O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 10 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline D-fructose Identifier CHEBI:37721 (Beilstein: 1680728; CAS: 57-48-7) help_outline Charge 0 Formula C6H12O6 InChIKeyhelp_outline RFSUNEUAIZKAJO-VRPWFDPXSA-N SMILEShelp_outline OC[C@H]1OC(O)(CO)[C@@H](O)[C@@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 26 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline ADP Identifier CHEBI:456216 (Beilstein: 3783669) help_outline Charge -3 Formula C10H12N5O10P2 InChIKeyhelp_outline XTWYTFMLZFPYCI-KQYNXXCUSA-K SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 841 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline sucrose Identifier CHEBI:17992 (Beilstein: 90825; CAS: 57-50-1) help_outline Charge 0 Formula C12H22O11 InChIKeyhelp_outline CZMRCDWAGMRECN-UGDNZRGBSA-N SMILEShelp_outline OC[C@H]1O[C@H](O[C@]2(CO)O[C@H](CO)[C@@H](O)[C@@H]2O)[C@H](O)[C@@H](O)[C@@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 27 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:55080 | RHEA:55081 | RHEA:55082 | RHEA:55083 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
KEGG help_outline |
Related reactions help_outline
More general form(s) of this reaction
Publications
-
The crystal structure of Nitrosomonas europaea sucrose synthase reveals critical conformational changes and insights into sucrose metabolism in prokaryotes.
Wu R., Asencion Diez M.D., Figueroa C.M., Machtey M., Iglesias A.A., Ballicora M.A., Liu D.
<h4>Unlabelled</h4>In this paper we report the first crystal structure of a prokaryotic sucrose synthase from the nonphotosynthetic bacterium Nitrosomonas europaea. The obtained structure was in an open form, whereas the only other available structure, from the plant Arabidopsis thaliana, was in a ... >> More
<h4>Unlabelled</h4>In this paper we report the first crystal structure of a prokaryotic sucrose synthase from the nonphotosynthetic bacterium Nitrosomonas europaea. The obtained structure was in an open form, whereas the only other available structure, from the plant Arabidopsis thaliana, was in a closed conformation. Comparative structural analysis revealed a "hinge-latch" combination, which is critical to transition between the open and closed forms of the enzyme. The N. europaea sucrose synthase shares the same fold as the GT-B family of the retaining glycosyltransferases. In addition, a triad of conserved homologous catalytic residues in the family was shown to be functionally critical in the N. europaea sucrose synthase (Arg567, Lys572, and Glu663). This implies that sucrose synthase shares not only a common origin with the GT-B family but also a similar catalytic mechanism. The enzyme preferred transferring glucose from ADP-glucose rather than UDP-glucose like the eukaryotic counterparts. This predicts that these prokaryotic organisms have a different sucrose metabolic scenario from plants. Nucleotide preference determines where the glucose moiety is targeted after sucrose is degraded.<h4>Importance</h4>We obtained biochemical and structural evidence of sucrose metabolism in nonphotosynthetic bacteria. Until now, only sucrose synthases from photosynthetic organisms have been characterized. Here, we provide the crystal structure of the sucrose synthase from the chemolithoautotroph N. europaea. The structure supported that the enzyme functions with an open/close induced fit mechanism. The enzyme prefers as the substrate adenine-based nucleotides rather than uridine-based like the eukaryotic counterparts, implying a strong connection between sucrose and glycogen metabolism in these bacteria. Mutagenesis data showed that the catalytic mechanism must be conserved not only in sucrose synthases but also in all other retaining GT-B glycosyltransferases. << Less
-
Identification of sucrose synthase in nonphotosynthetic bacteria and characterization of the recombinant enzymes.
Diricks M., De Bruyn F., Van Daele P., Walmagh M., Desmet T.
Sucrose synthase (SuSy) catalyzes the reversible conversion of sucrose and a nucleoside diphosphate into fructose and nucleotide (NDP)-glucose. To date, only SuSy's from plants and cyanobacteria, both photosynthetic organisms, have been characterized. Here, four prokaryotic SuSy enzymes from the n ... >> More
Sucrose synthase (SuSy) catalyzes the reversible conversion of sucrose and a nucleoside diphosphate into fructose and nucleotide (NDP)-glucose. To date, only SuSy's from plants and cyanobacteria, both photosynthetic organisms, have been characterized. Here, four prokaryotic SuSy enzymes from the nonphotosynthetic organisms Nitrosomonas Europaea (SuSyNe), Acidithiobacillus caldus (SuSyAc), Denitrovibrio acetiphilus (SusyDa), and Melioribacter roseus (SuSyMr) were recombinantly expressed in Escherichia coli and thoroughly characterized. The purified enzymes were found to display high-temperature optima (up to 80 °C), high activities (up to 125 U/mg), and high thermostability (up to 15 min at 60 °C). Furthermore, SuSyAc, SuSyNe, and SuSyDa showed a clear preference for ADP as nucleotide, as opposed to plant SuSy's which prefer UDP. A structural and mutational analysis was performed to elucidate the difference in NDP preference between eukaryotic and prokaryotic SuSy's. Finally, the physiological relevance of this enzyme specificity is discussed in the context of metabolic pathways and genomic organization. << Less
Appl. Microbiol. Biotechnol. 99:8465-8474(2015) [PubMed] [EuropePMC]
-
The unique nucleotide specificity of the sucrose synthase from Thermosynechococcus elongatus.
Figueroa C.M., Asencion Diez M.D., Kuhn M.L., McEwen S., Salerno G.L., Iglesias A.A., Ballicora M.A.
Sucrose synthase catalyzes the reversible conversion of sucrose and UDP into fructose and UDP-glucose. In filamentous cyanobacteria, the sucrose cleavage direction plays a key physiological function in carbon metabolism, nitrogen fixation, and stress tolerance. In unicellular strains, the function ... >> More
Sucrose synthase catalyzes the reversible conversion of sucrose and UDP into fructose and UDP-glucose. In filamentous cyanobacteria, the sucrose cleavage direction plays a key physiological function in carbon metabolism, nitrogen fixation, and stress tolerance. In unicellular strains, the function of sucrose synthase has not been elucidated. We report a detailed biochemical characterization of sucrose synthase from Thermosynechococcus elongatus after the gene was artificially synthesized for optimal expression in Escherichia coli. The homogeneous recombinant sucrose synthase was highly specific for ADP as substrate, constituting the first one with this unique characteristic, and strongly suggesting an interaction between sucrose and glycogen metabolism. << Less
-
Sucrose synthase catalyzes the de novo production of ADPglucose linked to starch biosynthesis in heterotrophic tissues of plants.
Baroja-Fernandez E., Munoz F.J., Saikusa T., Rodriguez-Lopez M., Akazawa T., Pozueta-Romero J.
By using barley seeds, developmental changes of ADPglucose (ADPG)-producing sucrose synthase (SS) and ADPG pyrophosphorylase (AGPase) have been compared with those of UDPglucose (UDPG), ADPG, sucrose (Suc) and starch contents. Both ADPG-synthesizing SS and AGPase activity patterns were found to co ... >> More
By using barley seeds, developmental changes of ADPglucose (ADPG)-producing sucrose synthase (SS) and ADPG pyrophosphorylase (AGPase) have been compared with those of UDPglucose (UDPG), ADPG, sucrose (Suc) and starch contents. Both ADPG-synthesizing SS and AGPase activity patterns were found to correlate well with those of ADPG and starch contents. Remarkably, however, maximal activities of ADPG-synthesizing SS were found to be several fold higher than those of AGPase throughout seed development, the highest rate of starch accumulation being well accounted for by SS. Kinetic analyses of SS from barley endosperms and potato tubers in the Suc cleavage direction showed similar K(m) values for ADP and UDP, whereas apparent affinity for Suc was shown to be higher in the presence of UDP than with ADP. Moreover, measurements of transglucosylation activities in starch granules incubated with purified SS, ADP and [U-(14)C]Suc revealed a low inhibitory effect of UDP. The ADPG and UDPG contents in the transgenic S-112 SS and starch deficient potato mutant [Zrenner et al. (1995) Plant J. 7: 97] were found to be 35% and 30% of those measured in wild-type plants, whereas both glucose-1-phosphate and glucose-6-phosphate contents were found to be normal as compared with those of wild-type plants. The overall results thus strongly support a novel gluconeogenic mechanism reported previously [Pozueta-Romero et al. (1999) CRIT: Rev. Plant Sci. 18: 489] wherein SS catalyses directly the de novo production of ADPG linked to starch biosynthesis in heterotrophic tissues of plants. << Less
Plant Cell Physiol. 44:500-509(2003) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.