Enzymes
UniProtKB help_outline | 1 proteins |
Enzyme class help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline 1-hydroxylimonen-2-one Identifier CHEBI:50246 Charge 0 Formula C10H16O2 InChIKeyhelp_outline JEQLRDRDFLXSHY-UHFFFAOYSA-N SMILEShelp_outline CC(=C)C1CCC(C)(O)C(=O)C1 2D coordinates Mol file for the small molecule Search links Involved in 9 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADPH Identifier CHEBI:57783 (Beilstein: 10411862) help_outline Charge -4 Formula C21H26N7O17P3 InChIKeyhelp_outline ACFIXJIJDZMPPO-NNYOXOHSSA-J SMILEShelp_outline NC(=O)C1=CN(C=CC1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](OP([O-])([O-])=O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,288 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline O2 Identifier CHEBI:15379 (CAS: 7782-44-7) help_outline Charge 0 Formula O2 InChIKeyhelp_outline MYMOFIZGZYHOMD-UHFFFAOYSA-N SMILEShelp_outline O=O 2D coordinates Mol file for the small molecule Search links Involved in 2,727 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 3-isopropenyl-6-oxoheptanoate Identifier CHEBI:64234 Charge -1 Formula C10H15O3 InChIKeyhelp_outline NJOIWWRMLFSDTM-UHFFFAOYSA-M SMILEShelp_outline CC(=C)C(CCC(C)=O)CC([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 6 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADP+ Identifier CHEBI:58349 Charge -3 Formula C21H25N7O17P3 InChIKeyhelp_outline XJLXINKUBYWONI-NNYOXOHSSA-K SMILEShelp_outline NC(=O)c1ccc[n+](c1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](OP([O-])([O-])=O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,294 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,264 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:55004 | RHEA:55005 | RHEA:55006 | RHEA:55007 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
MetaCyc help_outline |
Related reactions help_outline
Specific form(s) of this reaction
Publications
-
Purification and characterization of a Baeyer-Villiger mono-oxygenase from Rhodococcus erythropolis DCL14 involved in three different monocyclic monoterpene degradation pathways.
van der Werf M.J.
A Baeyer-Villiger mono-oxygenase (BVMO), catalysing the NADPH- and oxygen-dependent oxidation of the monocyclic monoterpene ketones 1-hydroxy-2-oxolimonene, dihydrocarvone and menthone, was purified to homogeneity from Rhodococcus erythropolis DCL14. Monocyclic monoterpene ketone mono-oxygenase (M ... >> More
A Baeyer-Villiger mono-oxygenase (BVMO), catalysing the NADPH- and oxygen-dependent oxidation of the monocyclic monoterpene ketones 1-hydroxy-2-oxolimonene, dihydrocarvone and menthone, was purified to homogeneity from Rhodococcus erythropolis DCL14. Monocyclic monoterpene ketone mono-oxygenase (MMKMO) is a monomeric enzyme of molecular mass 60 kDa. It contains 1 mol of FAD/monomer as the prosthetic group. The N-terminal amino acid sequence showed homology with many other NADPH-dependent and FAD-containing (Type 1) BVMOs. Maximal enzyme activity was measured at pH 9 and 35 degrees C. MMKMO has a broad substrate specificity, catalysing the lactonization of a large number of monocyclic monoterpene ketones and substituted cyclohexanones. The natural substrates 1-hydroxy-2-oxolimonene, dihydrocarvone and menthone were converted stoichiometrically into 3-isopropenyl-6-oxoheptanoate (the spontaneous rearrangement product of the lactone formed by MMKMO), 4-isopropenyl-7-methyl-2-oxo-oxepanone and 7-isopropyl-4-methyl-2-oxo-oxepanone respectively. The MMKMO-catalysed conversion of iso-dihydrocarvone showed an opposite regioselectivity to that of dihydrocarvone; in this case, 6-isopropenyl-3-methyl-2-oxo-oxepanone was formed as the product. MMKMO converted all enantiomers of the natural substrates with almost equal efficiency. MMKMO is involved in the conversion of the monocyclic monoterpene ketone intermediates formed in the degradation pathways of all stereoisomers of three different monocyclic monoterpenes, i.e. limonene, (dihydro)carveol and menthol. << Less
Biochem. J. 347:693-701(2000) [PubMed] [EuropePMC]
This publication is cited by 16 other entries.
-
Rhodococcus erythropolis DCL14 contains a novel degradation pathway for limonene.
van der Werf M.J., Swarts H.J., de Bont J.A.M.
Strain DCL14, which is able to grow on limonene as a sole source of carbon and energy, was isolated from a freshwater sediment sample. This organism was identified as a strain of Rhodococcus erythropolis by chemotaxonomic and genetic studies. R. erythropolis DCL14 also assimilated the terpenes lim ... >> More
Strain DCL14, which is able to grow on limonene as a sole source of carbon and energy, was isolated from a freshwater sediment sample. This organism was identified as a strain of Rhodococcus erythropolis by chemotaxonomic and genetic studies. R. erythropolis DCL14 also assimilated the terpenes limonene-1,2-epoxide, limonene-1,2-diol, carveol, carvone, and (-)-menthol, while perillyl alcohol was not utilized as a carbon and energy source. Induction tests with cells grown on limonene revealed that the oxygen consumption rates with limonene-1,2-epoxide, limonene-1,2-diol, 1-hydroxy-2-oxolimonene, and carveol were high. Limonene-induced cells of R. erythropolis DCL14 contained the following four novel enzymatic activities involved in the limonene degradation pathway of this microorganism: a flavin adenine dinucleotide- and NADH-dependent limonene 1, 2-monooxygenase activity, a cofactor-independent limonene-1, 2-epoxide hydrolase activity, a dichlorophenolindophenol-dependent limonene-1,2-diol dehydrogenase activity, and an NADPH-dependent 1-hydroxy-2-oxolimonene 1,2-monooxygenase activity. Product accumulation studies showed that (1S,2S,4R)-limonene-1,2-diol, (1S, 4R)-1-hydroxy-2-oxolimonene, and (3R)-3-isopropenyl-6-oxoheptanoate were intermediates in the (4R)-limonene degradation pathway. The opposite enantiomers [(1R,2R,4S)-limonene-1,2-diol, (1R, 4S)-1-hydroxy-2-oxolimonene, and (3S)-3-isopropenyl-6-oxoheptanoate] were found in the (4S)-limonene degradation pathway, while accumulation of (1R,2S,4S)-limonene-1,2-diol from (4S)-limonene was also observed. These results show that R. erythropolis DCL14 metabolizes both enantiomers of limonene via a novel degradation pathway that starts with epoxidation at the 1,2 double bond forming limonene-1,2-epoxide. This epoxide is subsequently converted to limonene-1,2-diol, 1-hydroxy-2-oxolimonene, and 7-hydroxy-4-isopropenyl-7-methyl-2-oxo-oxepanone. This lactone spontaneously rearranges to form 3-isopropenyl-6-oxoheptanoate. In the presence of coenzyme A and ATP this acid is converted further, and this finding, together with the high levels of isocitrate lyase activity in extracts of limonene-grown cells, suggests that further degradation takes place via the beta-oxidation pathway. << Less
Appl. Environ. Microbiol. 65:2092-2102(1999) [PubMed] [EuropePMC]
This publication is cited by 14 other entries.
Comments
Multi-step reaction: RHEA:52832 and RHEA:32599