Enzymes
UniProtKB help_outline | 12 proteins |
Enzyme class help_outline |
|
Reaction participants Show >> << Hide
-
Name help_outline
O3-(poly[β-D-GalNAc-(1→4)-β-D-GlcA-(1→3)]-β-D-GalNAc-(1→4)-β-D-GlcA-(1→3)-β-D-Gal-(1→3)-β-D-Gal-(1→4)-β-D-Xyl)-L-serine residue
Identifier
CHEBI:138445
Charge
Formula
(C14H20NO11)n.C34H53N2O27
Search links
Involved in 2 reaction(s)
Find proteins in UniProtKB for this molecule
Form(s) in this reaction:
-
Identifier: RHEA-COMP:14061Polymer name: 3-O-([β-D-GalNAc-(1→4)-β-D-GlcA-(1→3)](n)-β-D-GalNAc-(1→4)-β-D-GlcA-(1→3)-β-D-Gal-(1→3)-β-D-Gal-(1→4)-β-D-Xyl)-L-seryl-[protein]Polymerization index help_outline nFormula C34H53N2O27(C14H20NO11)nCharge (-1)(-1)nMol File for the polymer
-
- Name help_outline UDP-α-D-glucuronate Identifier CHEBI:58052 Charge -3 Formula C15H19N2O18P2 InChIKeyhelp_outline HDYANYHVCAPMJV-LXQIFKJMSA-K SMILEShelp_outline O[C@@H]1[C@@H](COP([O-])(=O)OP([O-])(=O)O[C@H]2O[C@@H]([C@@H](O)[C@H](O)[C@H]2O)C([O-])=O)O[C@H]([C@@H]1O)n1ccc(=O)[nH]c1=O 2D coordinates Mol file for the small molecule Search links Involved in 107 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Name help_outline
O3-(β-D-GlcA-(1→3)-poly[β-D-GalNAc-(1→4)-β-D-GlcA-(1→3)]-β-D-GalNAc-(1→4)-β-D-GlcA-(1→3)-β-D-Gal-(1→3)-β-D-Gal-(1→4)-β-D-Xyl)-L-serine residue
Identifier
CHEBI:138444
Charge
Formula
(C14H20NO11)n.C40H60N2O33
Search links
Involved in 2 reaction(s)
Find proteins in UniProtKB for this molecule
Form(s) in this reaction:
-
Identifier: RHEA-COMP:14060Polymer name: 3-O-(β-D-GlcA-(1→3)-[β-D-GalNAc-(1→4)-β-D-GlcA-(1→3)](n)-β-D-GalNAc-(1→4)-β-D-GlcA-(1→3)-β-D-Gal-(1→3)-β-D-Gal-(1→4)-β-D-Xyl)-L-seryl-[protein]Polymerization index help_outline nFormula C40H60N2O33(C14H20NO11)nCharge (-2)(-1)nMol File for the polymer
-
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline UDP Identifier CHEBI:58223 Charge -3 Formula C9H11N2O12P2 InChIKeyhelp_outline XCCTYIAWTASOJW-XVFCMESISA-K SMILEShelp_outline O[C@@H]1[C@@H](COP([O-])(=O)OP([O-])([O-])=O)O[C@H]([C@@H]1O)n1ccc(=O)[nH]c1=O 2D coordinates Mol file for the small molecule Search links Involved in 576 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:54996 | RHEA:54997 | RHEA:54998 | RHEA:54999 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
Molecular cloning and characterization of chondroitin polymerase from Escherichia coli strain K4.
Ninomiya T., Sugiura N., Tawada A., Sugimoto K., Watanabe H., Kimata K.
Escherichia coli strain K4 produces the K4 antigen, a capsule polysaccharide consisting of a chondroitin backbone (GlcUA beta(1-3)-GalNAc beta(1-4))(n) to which beta-fructose is linked at position C-3 of the GlcUA residue. We molecularly cloned region 2 of the K4 capsular gene cluster essential fo ... >> More
Escherichia coli strain K4 produces the K4 antigen, a capsule polysaccharide consisting of a chondroitin backbone (GlcUA beta(1-3)-GalNAc beta(1-4))(n) to which beta-fructose is linked at position C-3 of the GlcUA residue. We molecularly cloned region 2 of the K4 capsular gene cluster essential for biosynthesis of the polysaccharide, and we further identified a gene encoding a bifunctional glycosyltransferase that polymerizes the chondroitin backbone. The enzyme, containing two conserved glycosyltransferase sites, showed 59 and 61% identity at the amino acid level to class 2 hyaluronan synthase and chondroitin synthase from Pasteurella multocida, respectively. The soluble enzyme expressed in a bacterial expression system transferred GalNAc and GlcUA residues alternately, and polymerized the chondroitin chain up to a molecular mass of 20 kDa when chondroitin sulfate hexasaccharide was used as an acceptor. The enzyme exhibited apparent K(m) values for UDP-GlcUA and UDP-GalNAc of 3.44 and 31.6 microm, respectively, and absolutely required acceptors of chondroitin sulfate polymers and oligosaccharides at least longer than a tetrasaccharide. In addition, chondroitin polymers and oligosaccharides and hyaluronan polymers and oligosaccharides served as acceptors for chondroitin polymerization, but dermatan sulfate and heparin did not. These results may lead to elucidation of the mechanism for chondroitin chain synthesis in both microorganisms and mammals. << Less
J. Biol. Chem. 277:21567-21575(2002) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.
-
Identification and molecular cloning of a chondroitin synthase from Pasteurella multocida type F.
DeAngelis P.L., Padgett-McCue A.J.
Pasteurella multocida Type F, the minor fowl cholera pathogen, produces an extracellular polysaccharide capsule that is a putative virulence factor. It was reported that the capsule was removed by treating microbes with chondroitin AC lyase. We found by acid hydrolysis that the polysaccharide cont ... >> More
Pasteurella multocida Type F, the minor fowl cholera pathogen, produces an extracellular polysaccharide capsule that is a putative virulence factor. It was reported that the capsule was removed by treating microbes with chondroitin AC lyase. We found by acid hydrolysis that the polysaccharide contained galactosamine and glucuronic acid. We molecularly cloned a Type F polysaccharide synthase and characterized its enzymatic activity. The 965-residue enzyme, called P. multocida chondroitin synthase (pmCS), is 87% identical at the nucleotide and the amino acid level to the hyaluronan synthase, pmHAS, from P. multocida Type A. A recombinant Escherichia coli-derived truncated, soluble version of pmCS (residues 1-704) was shown to catalyze the repetitive addition of sugars from UDP-GalNAc and UDP-GlcUA to chondroitin oligosaccharide acceptors in vitro. Other structurally related sugar nucleotide precursors did not substitute in the elongation reaction. Polymer molecules composed of approximately 10(3) sugar residues were produced, as measured by gel filtration chromatography. The polysaccharide synthesized in vitro was sensitive to the action of chondroitin AC lyase but resistant to the action of hyaluronan lyase. This is the first report identifying a glycosyltransferase that forms a polysaccharide composed of chondroitin disaccharide repeats, [beta(1,4)GlcUA-beta(1,3)GalNAc](n). In analogy to known hyaluronan synthases, a single polypeptide species, pmCS, possesses both transferase activities. << Less
J. Biol. Chem. 275:24124-24129(2000) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.
-
Molecular cloning and characterization of a novel chondroitin sulfate glucuronyltransferase that transfers glucuronic acid to N-acetylgalactosamine.
Gotoh M., Yada T., Sato T., Akashima T., Iwasaki H., Mochizuki H., Inaba N., Togayachi A., Kudo T., Watanabe H., Kimata K., Narimatsu H.
We found a novel human gene (GenBank accession number, Kazusa DNA Research Institute KIAA1402) that possesses homology with chondroitin synthase. The full-length open reading frame consists of 772 amino acids and encodes a typical type II membrane protein. This enzyme had a domain containing beta ... >> More
We found a novel human gene (GenBank accession number, Kazusa DNA Research Institute KIAA1402) that possesses homology with chondroitin synthase. The full-length open reading frame consists of 772 amino acids and encodes a typical type II membrane protein. This enzyme had a domain containing beta 3-glycosyltransferase motifs, which might be a beta3-glucuronyltransferase domain, but no domain with beta 4-glycosyltransferase motifs, although both are found in chondroitin synthase. The putative catalytic domain was expressed in COS-7 cells as a soluble enzyme. Its glucuronyltransferase activity was observed when chondroitin and chondroitin sulfate polysaccharides and oligosaccharides were used as acceptor substrates. However, it was not detected when dermatan sulfate, hyaluronan, heparan sulfate, heparin, N-acetylheparosan, lactosamine tetrasaccharide, and linkage tri- and tetrasaccharide acceptors were employed. The reaction product, which was speculated to exhibit a GlcA beta 1-3GalNAc linkage structure at its non-reducing terminus, showed the following characteristics. 1) It was catabolized by beta-glucuronidase. 2) It was an acceptor for Escherichia coli K4 chondroitin polymerase (K4 chondroitin polymerase). 3) The product of K4 chondroitin polymerase was cleaved by chondroitinase ACII. On the other hand, no N-acetylgalactosaminyltransferase activity was detected toward any acceptors. Quantitative real time PCR analysis revealed that its transcripts were highly expressed in the placenta, small intestine, and pancreas, although they were ubiquitously expressed in various tissues and cell lines. This enzyme could play a role in the synthesis of chondroitin sulfate as a glucuronyltransferase. << Less
J. Biol. Chem. 277:38179-38188(2002) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Molecular cloning and expression of a human chondroitin synthase.
Kitagawa H., Uyama T., Sugahara K.
We have identified a human chondroitin synthase from the HUGE (human unidentified gene-encoded large proteins) protein data base by screening with two keywords: "one transmembrane domain" and "galactosyltransferase family." The identified protein consists of 802 amino acids with a type II transmem ... >> More
We have identified a human chondroitin synthase from the HUGE (human unidentified gene-encoded large proteins) protein data base by screening with two keywords: "one transmembrane domain" and "galactosyltransferase family." The identified protein consists of 802 amino acids with a type II transmembrane protein topology. The protein showed weak homology to the beta1,3-galactosyltransferase family on the amino-terminal side and to the beta1,4-galactosyltransferase family on the carboxyl-terminal side. The expression of a soluble recombinant form of the protein in COS-1 cells produced an active enzyme, which transferred not only the glucuronic acid (GlcUA) from UDP-[(14)C]GlcUA but also N-acetylgalactosamine (GalNAc) from UDP-[(3)H]GalNAc to the polymer chondroitin. Identification of the reaction products demonstrated that the enzyme was chondroitin synthase, with both beta1,3-GlcUA transferase and beta1,4-GalNAc transferase activities. The coding region of the chondroitin synthase was divided into three discrete exons and localized to chromosome 15. Northern blot analysis revealed that the chondroitin synthase gene exhibited ubiquitous but markedly differential expression in the human tissues examined. Thus, we demonstrated that analogous to human heparan sulfate polymerases, the single polypeptide chondroitin synthase possesses two glycosyltransferase activities required for chain polymerization. << Less
J. Biol. Chem. 276:38721-38726(2001) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.