Enzymes
UniProtKB help_outline | 6 proteins |
Reaction participants Show >> << Hide
- Name help_outline acetyl-CoA Identifier CHEBI:57288 (Beilstein: 8468140) help_outline Charge -4 Formula C23H34N7O17P3S InChIKeyhelp_outline ZSLZBFCDCINBPY-ZSJPKINUSA-J SMILEShelp_outline CC(=O)SCCNC(=O)CCNC(=O)[C@H](O)C(C)(C)COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 352 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
N6-carboxybiotinyl-L-lysyl-[protein]
Identifier
RHEA-COMP:10506
Reactive part
help_outline
- Name help_outline carboxybiotinyl-L-lysine residue Identifier CHEBI:83145 Charge -1 Formula C17H25N4O5S SMILEShelp_outline [O-]C(=O)N1[C@H]2CS[C@@H](CCCCC(=O)NCCCC[C@H](N-*)C(-*)=O)[C@H]2NC1=O 2D coordinates Mol file for the small molecule Search links Involved in 6 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline malonyl-CoA Identifier CHEBI:57384 Charge -5 Formula C24H33N7O19P3S InChIKeyhelp_outline LTYOQGRJFJAKNA-DVVLENMVSA-I SMILEShelp_outline CC(C)(COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)CC([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 211 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
N6-biotinyl-L-lysyl-[protein]
Identifier
RHEA-COMP:10505
Reactive part
help_outline
- Name help_outline N6-biotinyl-L-lysine residue Identifier CHEBI:83144 Charge 0 Formula C16H26N4O3S SMILEShelp_outline *-N[C@@H](CCCCNC(=O)CCCC[C@@H]1SC[C@@H]2NC(=O)N[C@H]12)C(-*)=O 2D coordinates Mol file for the small molecule Search links Involved in 12 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:54728 | RHEA:54729 | RHEA:54730 | RHEA:54731 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline | ||||
EcoCyc help_outline |
Publications
-
Identification and characterization of Rv3281 as a novel subunit of a biotin-dependent acyl-CoA carboxylase in Mycobacterium tuberculosis H37Rv.
Oh T.J., Daniel J., Kim H.J., Sirakova T.D., Kolattukudy P.E.
Mycobacterium tuberculosis produces a large number of structurally diverse lipids generated from the carboxylation products of acetyl-CoA and propionyl-CoA. A biotin-dependent acyl-CoA carboxylase was purified from M. tuberculosis H37Rv by avidin affinity chromatography, and the three major protei ... >> More
Mycobacterium tuberculosis produces a large number of structurally diverse lipids generated from the carboxylation products of acetyl-CoA and propionyl-CoA. A biotin-dependent acyl-CoA carboxylase was purified from M. tuberculosis H37Rv by avidin affinity chromatography, and the three major protein components were determined by N-terminal sequencing to be the 63-kDa alpha3-subunit (AccA3, Rv3285), the 59-kDa beta5-subunit (AccD5, Rv3280), and the 56-kDa beta4-subunit (AccD4, Rv3799). A minor protein of about 24 kDa that co-purified with the above subunits was identified by matrix-assisted laser desorption/ionization-time of flight mass spectrometry to be the product of Rv3281 that is located immediately downstream of the open reading frame encoding the beta5-subunit. This protein displays identity over a short stretch of amino acids with the recently discovered epsilon-subunits of Streptomyces coelicolor, suggesting that it might be an epsilon-subunit of the mycobacterial acyl-CoA carboxylase. To test this hypothesis, the carboxylase subunits were expressed in Escherichia coli and purified. Acyl-CoA carboxylase activity was successfully reconstituted for the first time from purified subunits of the acyl-CoA carboxylase of M. tuberculosis. The reconstituted alpha3-beta5 showed higher activity with propionyl-CoA than with acetyl-CoA, and the addition of the epsilon-subunit stimulated the carboxylation by 3.2- and 6.3-fold, respectively. The alpha3-beta4 showed very low activity with the above substrates but carboxylated long chain acyl-CoA. This epsilon-subunit contains five sets of tandem repeats at the N terminus that are required for maximal enhancement of carboxylase activity. The Rv3281 open reading frame is co-transcribed with Rv3280 in the mycobacterial cell, and the level of epsilon-protein was highest during the log phase and decreased during the stationary phase. << Less
J. Biol. Chem. 281:3899-3908(2006) [PubMed] [EuropePMC]
This publication is cited by 5 other entries.
-
A tale of two functions: enzymatic activity and translational repression by carboxyltransferase.
Meades G. Jr., Benson B.K., Grove A., Waldrop G.L.
Acetyl-CoA Carboxylase catalyzes the first committed step in fatty acid synthesis. Escherichia coli acetyl-CoA carboxylase is composed of biotin carboxylase, carboxyltransferase and biotin carboxyl carrier protein functions. The accA and accD genes that code for the alpha- and beta-subunits, respe ... >> More
Acetyl-CoA Carboxylase catalyzes the first committed step in fatty acid synthesis. Escherichia coli acetyl-CoA carboxylase is composed of biotin carboxylase, carboxyltransferase and biotin carboxyl carrier protein functions. The accA and accD genes that code for the alpha- and beta-subunits, respectively, are not in an operon, yet yield an alpha(2)beta(2) carboxyltransferase. Here, we report that carboxyltransferase regulates its own translation by binding the mRNA encoding its subunits. This interaction is mediated by a zinc finger on the beta-subunit; mutation of the four cysteines to alanine diminished nucleic acid binding and catalytic activity. Carboxyltransferase binds the coding regions of both subunit mRNAs and inhibits translation, an inhibition that is relieved by the substrate acetyl-CoA. mRNA binding reciprocally inhibits catalytic activity. Preferential binding of carboxyltransferase to RNA in situ was shown using fluorescence resonance energy transfer. We propose an unusual regulatory mechanism by which carboxyltransferase acts as a 'dimmer switch' to regulate protein production and catalytic activity, while sensing the metabolic state of the cell through acetyl-CoA concentration. << Less
-
Identification and characterization of the first class of potent bacterial acetyl-CoA carboxylase inhibitors with antibacterial activity.
Freiberg C., Brunner N.A., Schiffer G., Lampe T., Pohlmann J., Brands M., Raabe M., Haebich D., Ziegelbauer K.
The multisubunit acetyl-CoA carboxylase, which catalyzes the first committed step in fatty acid biosynthesis, is broadly conserved among bacteria. Its rate-limiting role in formation of fatty acids makes this enzyme an attractive target for the design of novel broad-spectrum antibacterials. Howeve ... >> More
The multisubunit acetyl-CoA carboxylase, which catalyzes the first committed step in fatty acid biosynthesis, is broadly conserved among bacteria. Its rate-limiting role in formation of fatty acids makes this enzyme an attractive target for the design of novel broad-spectrum antibacterials. However, no potent inhibitors have been discovered so far. This report describes the identification and characterization of highly potent bacterial acetyl-CoA carboxylase inhibitors with antibacterial activity for the first time. We demonstrate that pseudopeptide pyrrolidine dione antibiotics such as moiramide B inhibit the Escherichia coli enzyme at nanomolar concentrations. Moiramide B targets the carboxyltransferase reaction of this enzyme with a competitive inhibition pattern versus malonyl-CoA (K(i) value = 5 nm). Inhibition at nanomolar concentrations of the pyrrolidine diones is also demonstrated using recombinantly expressed carboxyltransferases from other bacterial species (Staphylococcus aureus, Streptococcus pneumoniae, and Pseudomonas aeruginosa). We isolated pyrrolidine dione-resistant strains of E. coli, S. aureus, and Bacillus subtilis, which contain mutations within the carboxyltransferase subunits AccA or AccD. We demonstrate that such mutations confer resistance to pyrrolidine diones. Inhibition values (IC(50)) of >100 microm regarding an eukaryotic acetyl-CoA carboxylase from rat liver indicate high selectivity of pyrrolidine diones for the bacterial multisubunit enzyme. The natural product moiramide B and synthetic analogues show broad-spectrum antibacterial activity. The knowledge of the target and the availability of facile assays using carboxyltransferases from different pathogens will enable evaluation of the antibacterial potential of the pyrrolidine diones as a promising antibacterial compound class acting via a novel mode of action. << Less
-
Biochemical and structural characterization of an essential acyl coenzyme A carboxylase from Mycobacterium tuberculosis.
Gago G., Kurth D., Diacovich L., Tsai S.C., Gramajo H.
Pathogenic mycobacteria contain a variety of unique fatty acids that have methyl branches at an even-numbered position at the carboxyl end and a long n-aliphatic chain. One such group of acids, called mycocerosic acids, is found uniquely in the cell wall of pathogenic mycobacteria, and their biosy ... >> More
Pathogenic mycobacteria contain a variety of unique fatty acids that have methyl branches at an even-numbered position at the carboxyl end and a long n-aliphatic chain. One such group of acids, called mycocerosic acids, is found uniquely in the cell wall of pathogenic mycobacteria, and their biosynthesis is essential for growth and pathogenesis. Therefore, the biosynthetic pathway of the unique precursor of such lipids, methylmalonyl coenzyme A (CoA), represents an attractive target for developing new antituberculous drugs. Heterologous protein expression and purification of the individual subunits allowed the successful reconstitution of an essential acyl-CoA carboxylase from Mycobacterium tuberculosis, whose main role appears to be the synthesis of methylmalonyl-CoA. The enzyme complex was reconstituted from the alpha biotinylated subunit AccA3, the carboxyltransferase beta subunit AccD5, and the epsilon subunit AccE5 (Rv3281). The kinetic properties of this enzyme showed a clear substrate preference for propionyl-CoA compared with acetyl-CoA (specificity constant fivefold higher), indicating that the main physiological role of this enzyme complex is to generate methylmalonyl-CoA for the biosynthesis of branched-chain fatty acids. The alpha and beta subunits are capable of forming a stable alpha6-beta6 subcomplex but with very low specific activity. The addition of the epsilon subunit, which binds tightly to the alpha-beta subcomplex, is essential for gaining maximal enzyme activity. << Less
J. Bacteriol. 188:477-486(2006) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Characterization of a bifunctional archaeal acyl coenzyme A carboxylase.
Chuakrut S., Arai H., Ishii M., Igarashi Y.
Acyl coenzyme A carboxylase (acyl-CoA carboxylase) was purified from Acidianus brierleyi. The purified enzyme showed a unique subunit structure (three subunits with apparent molecular masses of 62, 59, and 20 kDa) and a molecular mass of approximately 540 kDa, indicating an alpha(4)beta(4)gamma(4) ... >> More
Acyl coenzyme A carboxylase (acyl-CoA carboxylase) was purified from Acidianus brierleyi. The purified enzyme showed a unique subunit structure (three subunits with apparent molecular masses of 62, 59, and 20 kDa) and a molecular mass of approximately 540 kDa, indicating an alpha(4)beta(4)gamma(4) subunit structure. The optimum temperature for the enzyme was 60 to 70 degrees C, and the optimum pH was around 6.4 to 6.9. Interestingly, the purified enzyme also had propionyl-CoA carboxylase activity. The apparent K(m) for acetyl-CoA was 0.17 +/-0.03 mM, with a V(max) of 43.3 +/-2.8 U mg(-1), and the K(m) for propionyl-CoA was 0.10 +/-0.008 mM, with a V(max) of 40.8 +/-1.0 U mg(-1). This result showed that A. brierleyi acyl-CoA carboxylase is a bifunctional enzyme in the modified 3-hydroxypropionate cycle. Both enzymatic activities were inhibited by malonyl-CoA, methymalonyl-CoA, succinyl-CoA, or CoA but not by palmitoyl-CoA. The gene encoding acyl-CoA carboxylase was cloned and characterized. Homology searches of the deduced amino acid sequences of the 62-, 59-, and 20-kDa subunits indicated the presence of functional domains for carboxyltransferase, biotin carboxylase, and biotin carboxyl carrier protein, respectively. Amino acid sequence alignment of acetyl-CoA carboxylases revealed that archaeal acyl-CoA carboxylases are closer to those of Bacteria than to those of Eucarya. The substrate-binding motifs of the enzymes are highly conserved among the three domains. The ATP-binding residues were found in the biotin carboxylase subunit, whereas the conserved biotin-binding site was located on the biotin carboxyl carrier protein. The acyl-CoA-binding site and the carboxybiotin-binding site were found in the carboxyltransferase subunit. << Less
-
The structure of the carboxyltransferase component of acetyl-coA carboxylase reveals a zinc-binding motif unique to the bacterial enzyme.
Bilder P., Lightle S., Bainbridge G., Ohren J., Finzel B., Sun F., Holley S., Al-Kassim L., Spessard C., Melnick M., Newcomer M., Waldrop G.L.
Acetyl-coA carboxylase (ACC) is a central metabolic enzyme that catalyzes the committed step in fatty acid biosynthesis: biotin-dependent conversion of acetyl-coA to malonyl-coA. The bacterial carboxyltransferase (CT) subunit of ACC is a target for the design of novel therapeutics that combat seve ... >> More
Acetyl-coA carboxylase (ACC) is a central metabolic enzyme that catalyzes the committed step in fatty acid biosynthesis: biotin-dependent conversion of acetyl-coA to malonyl-coA. The bacterial carboxyltransferase (CT) subunit of ACC is a target for the design of novel therapeutics that combat severe, hospital-acquired infections resistant to the established classes of frontline antimicrobials. Here, we present the structures of the bacterial CT subunits from two prevalent nosocomial pathogens, Staphylococcus aureus and Escherichia coli, at a resolution of 2.0 and 3.0 A, respectively. Both structures reveal a small, independent zinc-binding domain that lacks a complement in the primary sequence or structure of the eukaryotic homologue. << Less