Reaction participants Show >> << Hide
- Name help_outline (2E,6E)-farnesyl diphosphate Identifier CHEBI:175763 Charge -3 Formula C15H25O7P2 InChIKeyhelp_outline VWFJDQUYCIWHTN-YFVJMOTDSA-K SMILEShelp_outline CC(C)=CCC\C(C)=C\CC\C(C)=C\COP([O-])(=O)OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 177 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,264 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline (2Z,6E)-hedycaryol Identifier CHEBI:138044 Charge 0 Formula C15H26O InChIKeyhelp_outline SDMLCXJKAYFHQM-NCUXMUJLSA-N SMILEShelp_outline C\C1=C/CC\C(C)=C/C[C@@H](CC1)C(C)(C)O 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline diphosphate Identifier CHEBI:33019 (Beilstein: 185088) help_outline Charge -3 Formula HO7P2 InChIKeyhelp_outline XPPKVPWEQAFLFU-UHFFFAOYSA-K SMILEShelp_outline OP([O-])(=O)OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 1,139 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:54060 | RHEA:54061 | RHEA:54062 | RHEA:54063 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
Hedycaryol synthase in complex with nerolidol reveals terpene cyclase mechanism.
Baer P., Rabe P., Citron C.A., de Oliveira Mann C.C., Kaufmann N., Groll M., Dickschat J.S.
The biosynthesis of terpenes is catalysed by class I and II terpene cyclases. Here we present structural data from a class I hedycaryol synthase in complex with nerolidol, serving as a surrogate for the reaction intermediate nerolidyl diphosphate. This prefolded ligand allows mapping of the active ... >> More
The biosynthesis of terpenes is catalysed by class I and II terpene cyclases. Here we present structural data from a class I hedycaryol synthase in complex with nerolidol, serving as a surrogate for the reaction intermediate nerolidyl diphosphate. This prefolded ligand allows mapping of the active site and hence the identification of a key carbonyl oxygen of Val179, a highly conserved helix break (G1/2) and its corresponding helix dipole. Stabilising the carbocation at the substrate's C1 position, these elements act in concert to catalyse the 1,10 ring closure, thereby exclusively generating the anti-Markovnikov product. The delineation of a general mechanistic scaffold was confirmed by site-specific mutations. This work serves as a basis for understanding carbocation chemistry in enzymatic reactions and should contribute to future application of these enzymes in organic synthesis. << Less
-
Identification of novel sesquiterpene synthase genes that mediate the biosynthesis of valerianol, which was an unknown ingredient of tea.
Hattan J., Shindo K., Sasaki T., Ohno F., Tokuda H., Ishikawa K., Misawa N.
Seven cDNA clones encoding terpene synthases (TPSs), their structures closely related to each other, were isolated from the flower of Camellia hiemalis ('Kantsubaki'). Their putative TPS proteins were phylogenetically positioned in a sole clade with the TPSs of other Camellia species. The obtained ... >> More
Seven cDNA clones encoding terpene synthases (TPSs), their structures closely related to each other, were isolated from the flower of Camellia hiemalis ('Kantsubaki'). Their putative TPS proteins were phylogenetically positioned in a sole clade with the TPSs of other Camellia species. The obtained Tps genes, one of which was designated ChTps1 (ChTps1a), were introduced into mevalonate-pathway-engineered Escherichia coli, which carried the genes for utilizing acetoacetate as a substrate, and cultured in a medium including lithium acetoacetate. Volatile products generated in the E. coli cells transformed with ChTps1 were purified from the cell suspension culture, and analyzed by NMR. Consequently, the predominant product with ChTPS1 was identified as valerianol, indicating that the ChTps1 gene codes for valerianol synthase. This is the first report on a gene that can mediate the synthesis of valerianol. We next synthesized a Tps ortholog encoding ChTPS1variant R477H (named CsiTPS8), whose sequence had been isolated from a tea tree (Camellia sinensis), carried out similar culture experiment with the E. coli transformant including CsiTps8, and consequently found valerianol production equally. Furthermore, GC-MS analysis of several teas revealed that valerianol had been an unknown ingredient in green tea and black tea. << Less
Sci. Rep. 8:12474-12474(2018) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.