Enzymes
UniProtKB help_outline | 3 proteins |
Reaction participants Show >> << Hide
- Name help_outline dTDP-4-amino-4,6-dideoxy-α-D-glucose Identifier CHEBI:68501 Charge -1 Formula C16H26N3O14P2 InChIKeyhelp_outline UIVJXHWSIFBBCY-LPGAPTBISA-M SMILEShelp_outline C[C@H]1O[C@H](OP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H](C[C@@H]2O)n2cc(C)c(=O)[nH]c2=O)[C@H](O)[C@@H](O)[C@@H]1[NH3+] 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline (6R)-10-formyltetrahydrofolate Identifier CHEBI:195366 Charge -2 Formula C20H21N7O7 InChIKeyhelp_outline AUFGTPPARQZWDO-YPMHNXCESA-L SMILEShelp_outline [H]C(=O)N(C[C@H]1CNC2=C(N1)C(=O)NC(N)=N2)C1=CC=C(C=C1)C(=O)N[C@@H](CCC([O-])=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 10 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline dTDP-4-formamido-4,6-dideoxy-α-D-glucose Identifier CHEBI:138034 Charge -2 Formula C17H25N3O15P2 InChIKeyhelp_outline QULUVRDLMBXPHO-GJSHGOAISA-L SMILEShelp_outline [C@@H]1(N2C(NC(=O)C(=C2)C)=O)O[C@H](COP(OP(O[C@H]3O[C@@H]([C@H]([C@@H]([C@H]3O)O)NC([H])=O)C)(=O)[O-])(=O)[O-])[C@H](C1)O 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline (6S)-5,6,7,8-tetrahydrofolate Identifier CHEBI:57453 (Beilstein: 10223255) help_outline Charge -2 Formula C19H21N7O6 InChIKeyhelp_outline MSTNYGQPCMXVAQ-RYUDHWBXSA-L SMILEShelp_outline Nc1nc2NC[C@H](CNc3ccc(cc3)C(=O)N[C@@H](CCC([O-])=O)C([O-])=O)Nc2c(=O)[nH]1 2D coordinates Mol file for the small molecule Search links Involved in 41 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:54032 | RHEA:54033 | RHEA:54034 | RHEA:54035 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
MetaCyc help_outline |
Publications
-
Investigation of a sugar N-formyltransferase from the plant pathogen Pantoea ananatis.
Hofmeister D.L., Thoden J.B., Holden H.M.
Pantoea ananatis is a Gram-negative bacterium first recognized in 1928 as the causative agent of pineapple rot in the Philippines. Since then various strains of the organism have been implicated in the devastation of agriculturally important crops. Some strains, however, have been shown to functio ... >> More
Pantoea ananatis is a Gram-negative bacterium first recognized in 1928 as the causative agent of pineapple rot in the Philippines. Since then various strains of the organism have been implicated in the devastation of agriculturally important crops. Some strains, however, have been shown to function as non-pathogenic plant growth promoting organisms. To date, the factors that determine pathogenicity or lack thereof between the various strains are not well understood. All P. ananatis strains contain lipopolysaccharides, which differ with respect to the identities of their associated sugars. Given our research interest on the presence of the unusual sugar, 4-formamido-4,6-dideoxy-d-glucose, found on the lipopolysaccharides of Campylobacter jejuni and Francisella tularensis, we were curious as to whether other bacteria have the appropriate biosynthetic machinery to produce these unique carbohydrates. Four enzymes are typically required for their biosynthesis: a thymidylyltransferase, a 4,6-dehydratase, an aminotransferase, and an N-formyltransferase. Here, we report that the gene SAMN03097714_1080 from the P. ananatis strain NFR11 does, indeed, encode for an N-formyltransferase, hereafter referred to as PA1080c. Our kinetic analysis demonstrates that PA1080c displays classical Michaelis-Menten kinetics with dTDP-4-amino-4,6-dideoxy-d-glucose as the substrate and N<sup>10</sup> -formyltetrahydrofolate as the carbon source. In addition, the X-ray structure of PA1080c, determined to 1.7 Å resolution, shows that the enzyme adopts the molecular architecture observed for other sugar N-formyltransferases. Analysis of the P. ananatis NFR11 genome suggests that the three other enzymes necessary for N-formylated sugar biosynthesis are also present. Intriguingly, those strains of P. ananatis that are non-pathogenic apparently do not contain these genes. << Less
-
Biochemical investigation of Rv3404c from Mycobacterium tuberculosis.
Dunsirn M.M., Thoden J.B., Gilbert M., Holden H.M.
The causative agent of tuberculosis, Mycobacterium tuberculosis, is a bacterium with a complex cell wall and a complicated life cycle. The genome of M. tuberculosis contains well over 4000 genes thought to encode proteins. One of these codes for a putative enzyme referred to as Rv3404c, which has ... >> More
The causative agent of tuberculosis, Mycobacterium tuberculosis, is a bacterium with a complex cell wall and a complicated life cycle. The genome of M. tuberculosis contains well over 4000 genes thought to encode proteins. One of these codes for a putative enzyme referred to as Rv3404c, which has attracted research attention as a potential virulence factor for over 12 years. Here we demonstrate that Rv3404c functions as a sugar N-formyltransferase that converts dTDP-4-amino-4,6-dideoxyglucose into dTDP-4-formamido-4,6-dideoxyglucose using N<sup>10</sup>-formyltetrahydrofolate as the carbon source. Kinetic analyses demonstrate that Rv3404c displays a significant catalytic efficiency of 1.1 × 10<sup>4</sup> M<sup>-1</sup> s<sup>-1</sup>. In addition, we report the X-ray structure of a ternary complex of Rv3404c solved in the presence of N<sup>5</sup>-formyltetrahydrofolate and dTDP-4-amino-4,6-dideoxyglucose. The final model of Rv3404c was refined to an overall R-factor of 16.8% at 1.6 Å resolution. The results described herein are especially intriguing given that there have been no published reports of N-formylated sugars associated with M. tuberculosis. The data thus provide a new avenue of research into this fascinating, yet deadly, organism that apparently has been associated with human infection since ancient times. << Less
-
Misannotations of the genes encoding sugar N-formyltransferases.
Girardi N.M., Thoden J.B., Holden H.M.
Tens of thousands of bacterial genome sequences are now known due to the development of rapid and inexpensive sequencing technologies. An important key in utilizing these vast amounts of data in a biologically meaningful way is to infer the function of the proteins encoded in the genomes via bioin ... >> More
Tens of thousands of bacterial genome sequences are now known due to the development of rapid and inexpensive sequencing technologies. An important key in utilizing these vast amounts of data in a biologically meaningful way is to infer the function of the proteins encoded in the genomes via bioinformatics techniques. Whereas these approaches are absolutely critical to the annotation of gene function, there are still issues of misidentifications, which must be experimentally corrected. For example, many of the bacterial DNA sequences encoding sugar N-formyltransferases have been annotated as l-methionyl-tRNA transferases in the databases. These mistakes may be due in part to the fact that until recently the structures and functions of these enzymes were not well known. Herein we describe the misannotation of two genes, WP_088211966.1 and WP_096244125.1, from Shewanella spp. and Pseudomonas congelans, respectively. Although the proteins encoded by these genes were originally suggested to function as l-methionyl-tRNA transferases, we demonstrate that they actually catalyze the conversion of dTDP-4-amino-4,6-dideoxy-d-glucose to dTDP-4-formamido-4,6-dideoxy-d-glucose utilizing N<sup>10</sup> -formyltetrahydrofolate as the carbon source. For this analysis, the genes encoding these enzymes were cloned and the corresponding proteins purified. X-ray structures of the two proteins were determined to high resolution and kinetic analyses were conducted. Both enzymes display classical Michaelis-Menten kinetics and adopt the characteristic three-dimensional structural fold previously observed for other sugar N-formyltransferases. The results presented herein will aid in the future annotation of these fascinating enzymes. << Less