Reaction participants Show >> << Hide
-
Namehelp_outline
a (3R)-hydroxyacyl-[ACP]
Identifier
RHEA-COMP:9945
Reactive part
help_outline
- Name help_outline (3R)-hydroxyacyl-pantetheine-4-phosphorylserine residue Identifier CHEBI:78827 Charge -1 Formula C17H28N3O10PSR SMILEShelp_outline CC(C)(COP([O-])(=O)OC[C@H](N-*)C(-*)=O)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)C[C@H](O)[*] 2D coordinates Mol file for the small molecule Search links Involved in 8 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline a UDP-3-O-[(3R)-3-hydroxyacyl]-α-D-glucosamine Identifier CHEBI:137740 Charge -1 Formula C18H27N3O18P2R SMILEShelp_outline [C@@H]1(N2C(NC(=O)C=C2)=O)O[C@H](COP(OP([O-])(O[C@@H]3[C@@H]([C@H]([C@@H]([C@H](O3)CO)O)OC(=O)C[C@@H](*)O)[NH3+])=O)([O-])=O)[C@H]([C@H]1O)O 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline a UDP-2-N,3-O-bis[(3R)-3-hydroxyacyl]-α-D-glucosamine Identifier CHEBI:137748 Charge -2 Formula C21H29N3O20P2R2 SMILEShelp_outline [C@@H]1(N2C(NC(=O)C=C2)=O)O[C@H](COP(OP([O-])(O[C@@H]3[C@@H]([C@H]([C@@H]([C@H](O3)CO)O)OC(=O)C[C@@H](*)O)NC(C[C@@H](*)O)=O)=O)([O-])=O)[C@H]([C@H]1O)O 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
holo-[ACP]
Identifier
RHEA-COMP:9685
Reactive part
help_outline
- Name help_outline O-(pantetheine-4ʼ-phosphoryl)-L-serine residue Identifier CHEBI:64479 Charge -1 Formula C14H25N3O8PS SMILEShelp_outline C(NC(CCNC(=O)[C@@H](C(COP(OC[C@@H](C(*)=O)N*)(=O)[O-])(C)C)O)=O)CS 2D coordinates Mol file for the small molecule Search links Involved in 190 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:53836 | RHEA:53837 | RHEA:53838 | RHEA:53839 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
MetaCyc help_outline |
Related reactions help_outline
Specific form(s) of this reaction
Publications
-
Crystal structure and acyl chain selectivity of Escherichia coli LpxD, the N-acyltransferase of lipid A biosynthesis.
Bartling C.M., Raetz C.R.
LpxD catalyzes the third step of lipid A biosynthesis, the R-3-hydroxyacyl-ACP-dependent N-acylation of UDP-3-O-(acyl)-alpha-D-glucosamine, and is a target for new antibiotic development. Here we report the 2.6 A crystal structure of the Escherichia coli LpxD homotrimer (EcLpxD). As is the case in ... >> More
LpxD catalyzes the third step of lipid A biosynthesis, the R-3-hydroxyacyl-ACP-dependent N-acylation of UDP-3-O-(acyl)-alpha-D-glucosamine, and is a target for new antibiotic development. Here we report the 2.6 A crystal structure of the Escherichia coli LpxD homotrimer (EcLpxD). As is the case in Chlamydia trachomatis LpxD (CtLxpD), each EcLpxD chain consists of an N-terminal uridine-binding region, a left-handed parallel beta-helix (LbetaH), and a C-terminal alpha-helical domain. The backbones of the LbetaH domains of the two enzymes are similar, as are the positions of key active site residues. The N-terminal nucleotide binding domains are oriented differently relative to the LbetaH regions, but are similar when overlaid on each other. The orientation of the EcLpxD tripeptide (residues 303-305), connecting the distal end of the LbetaH and the proximal end of the C-terminal helical domains, differs from its counterpart in CtLpxD (residues 311-312); this results in a 120 degrees rotation of the C-terminal domain relative to the LbetaH region in EcLpxD versus CtLpxD. M290 of EcLpxD appears to cap the distal end of a hydrophobic cleft that binds the acyl chain of the R-3-hydroxyacyl-ACP donor substrate. Under standard assay conditions, wild-type EcLpxD prefers R,S-3-hydroxymyristoyl-ACP over R,S-3-hydroxypalmitoyl-ACP by a factor of 3, whereas the M290A mutant has the opposite selectivity. Both wild-type and M290A EcLpxD rescue the conditional lethality of E. coli RL25, a temperature-sensitive strain harboring point mutations in lpxD. Complementation with wild-type EcLpxD restores normal lipid A containing only N-linked hydroxymyristate to RL25 at 42 degrees C, as judged by mass spectrometry, whereas the M290A mutant generates multiple lipid A species containing one or two longer hydroxy fatty acids in place of the usual R-3-hydroxymyristate at positions 2 and 2'. << Less
Biochemistry 48:8672-8683(2009) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.