Enzymes
UniProtKB help_outline | 3 proteins |
Enzyme class help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline (2E,6E)-farnesyl diphosphate Identifier CHEBI:175763 Charge -3 Formula C15H25O7P2 InChIKeyhelp_outline VWFJDQUYCIWHTN-YFVJMOTDSA-K SMILEShelp_outline CC(C)=CCC\C(C)=C\CC\C(C)=C\COP([O-])(=O)OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 175 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (Beilstein: 3587155; CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,204 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline (+)-isoafricanol Identifier CHEBI:137522 (CAS: 104975-19-1) help_outline Charge 0 Formula C15H26O InChIKeyhelp_outline KVFZUTBKAXAVDX-CYHVGBIXSA-N SMILEShelp_outline [C@@]12([C@]3([C@@H](CC(C[C@]1([C@@H](CC2)C)O)(C)C)C3)C)[H] 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline diphosphate Identifier CHEBI:33019 (Beilstein: 185088) help_outline Charge -3 Formula HO7P2 InChIKeyhelp_outline XPPKVPWEQAFLFU-UHFFFAOYSA-K SMILEShelp_outline OP([O-])(=O)OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 1,129 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:53616 | RHEA:53617 | RHEA:53618 | RHEA:53619 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
Isoafricanol synthase from Streptomyces malaysiensis.
Rabe P., Samborskyy M., Leadlay P.F., Dickschat J.S.
Genome sequencing of Streptomyces malaysiensis DSM 4137 revealed the presence of four terpene cyclase genes, one of which was characterised as (+)-isoafricanol synthase. Its cyclisation mechanism was extensively studied using isotopically labelled precursors. Several enzymes with high homology tha ... >> More
Genome sequencing of Streptomyces malaysiensis DSM 4137 revealed the presence of four terpene cyclase genes, one of which was characterised as (+)-isoafricanol synthase. Its cyclisation mechanism was extensively studied using isotopically labelled precursors. Several enzymes with high homology that likely also function as (+)-isoafricanol synthases are encoded in a number of other genome sequenced streptomycetes. << Less
-
An unusual skeletal rearrangement in the biosynthesis of the sesquiterpene trichobrasilenol from Trichoderma.
Murai K., Lauterbach L., Teramoto K., Quan Z., Barra L., Yamamoto T., Nonaka K., Shiomi K., Nishiyama M., Kuzuyama T., Dickschat J.S.
The skeletons of some classes of terpenoids are unusual in that they contain a larger number of Me groups (or their biosynthetic equivalents such as olefinic methylene groups, hydroxymethyl groups, aldehydes, or carboxylic acids and their derivatives) than provided by their oligoprenyl diphosphate ... >> More
The skeletons of some classes of terpenoids are unusual in that they contain a larger number of Me groups (or their biosynthetic equivalents such as olefinic methylene groups, hydroxymethyl groups, aldehydes, or carboxylic acids and their derivatives) than provided by their oligoprenyl diphosphate precursor. This is sometimes the result of an oxidative ring-opening reaction at a terpene-cyclase-derived molecule containing the regular number of Me group equivalents, as observed for picrotoxan sesquiterpenes. In this study a sesquiterpene cyclase from Trichoderma spp. is described that can convert farnesyl diphosphate (FPP) directly via a remarkable skeletal rearrangement into trichobrasilenol, a new brasilane sesquiterpene with one additional Me group equivalent compared to FPP. A mechanistic hypothesis for the formation of the brasilane skeleton is supported by extensive isotopic labelling studies. << Less
Angew. Chem. Int. Ed. 58:15046-15050(2019) [PubMed] [EuropePMC]
This publication is cited by 7 other entries.
-
Identification of isoafricanol and its terpene cyclase in Streptomyces violaceusniger using CLSA-NMR.
Riclea R., Citron C.A., Rinkel J., Dickschat J.S.
The recently developed CLSA-NMR technique that is based on feeding experiments with (13)C-labelled precursors was applied in the identification of isoafricanol as the main volatile terpene emitted by Streptomyces violaceusniger. The isoafricanol synthase of this organism is presented, together wit ... >> More
The recently developed CLSA-NMR technique that is based on feeding experiments with (13)C-labelled precursors was applied in the identification of isoafricanol as the main volatile terpene emitted by Streptomyces violaceusniger. The isoafricanol synthase of this organism is presented, together with a recent phylogenetic analysis of bacterial terpene cyclases. << Less
Chem. Commun. (Camb.) 50:4228-4230(2014) [PubMed] [EuropePMC]