Enzymes
UniProtKB help_outline | 4 proteins |
Reaction participants Show >> << Hide
-
Namehelp_outline
5,6-dihydrouridine20 in tRNA
Identifier
RHEA-COMP:13534
Reactive part
help_outline
- Name help_outline 5,6-dihydrouridine 5'-phosphate residue Identifier CHEBI:74443 Charge -1 Formula C9H12N2O8P Positionhelp_outline 20 SMILEShelp_outline C1CC(NC(N1[C@@H]2O[C@H](COP(*)(=O)[O-])[C@H]([C@H]2O)O*)=O)=O 2D coordinates Mol file for the small molecule Search links Involved in 18 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADP+ Identifier CHEBI:58349 Charge -3 Formula C21H25N7O17P3 InChIKeyhelp_outline XJLXINKUBYWONI-NNYOXOHSSA-K SMILEShelp_outline NC(=O)c1ccc[n+](c1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](OP([O-])([O-])=O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,285 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADPH Identifier CHEBI:57783 (Beilstein: 10411862) help_outline Charge -4 Formula C21H26N7O17P3 InChIKeyhelp_outline ACFIXJIJDZMPPO-NNYOXOHSSA-J SMILEShelp_outline NC(=O)C1=CN(C=CC1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](OP([O-])([O-])=O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,279 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
uridine20 in tRNA
Identifier
RHEA-COMP:13533
Reactive part
help_outline
- Name help_outline UMP residue Identifier CHEBI:65315 Charge -1 Formula C9H10N2O8P Positionhelp_outline 20 SMILEShelp_outline C1=CC(NC(N1[C@@H]2O[C@H](COP(*)(=O)[O-])[C@H]([C@H]2O)O*)=O)=O 2D coordinates Mol file for the small molecule Search links Involved in 73 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:53336 | RHEA:53337 | RHEA:53338 | RHEA:53339 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
MetaCyc help_outline |
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Molecular basis of dihydrouridine formation on tRNA.
Yu F., Tanaka Y., Yamashita K., Suzuki T., Nakamura A., Hirano N., Suzuki T., Yao M., Tanaka I.
Dihydrouridine (D) is a highly conserved modified base found in tRNAs from all domains of life. Dihydrouridine synthase (Dus) catalyzes the D formation of tRNA through reduction of uracil base with flavin mononucleotide (FMN) as a cofactor. Here, we report the crystal structures of Thermus thermop ... >> More
Dihydrouridine (D) is a highly conserved modified base found in tRNAs from all domains of life. Dihydrouridine synthase (Dus) catalyzes the D formation of tRNA through reduction of uracil base with flavin mononucleotide (FMN) as a cofactor. Here, we report the crystal structures of Thermus thermophilus Dus (TthDus), which is responsible for D formation at positions 20 and 20a, in complex with tRNA and with a short fragment of tRNA (D-loop). Dus interacts extensively with the D-arm and recognizes the elbow region composed of the kissing loop interaction between T- and D-loops in tRNA, pulling U20 into the catalytic center for reduction. Although distortion of the D-loop structure was observed upon binding of Dus to tRNA, the canonical D-loop/T-loop interaction was maintained. These results were consistent with the observation that Dus preferentially recognizes modified rather than unmodified tRNAs, indicating that Dus introduces D20 by monitoring the complete L-shaped structure of tRNAs. In the active site, U20 is stacked on the isoalloxazine ring of FMN, and C5 of the U20 uracil ring is covalently cross linked to the thiol group of Cys93, implying a catalytic mechanism of D20 formation. In addition, the involvement of a cofactor molecule in uracil ring recognition was proposed. Based on a series of mutation analyses, we propose a molecular basis of tRNA recognition and D formation catalyzed by Dus. << Less
Proc. Natl. Acad. Sci. U.S.A. 108:19593-19598(2011) [PubMed] [EuropePMC]
This publication is cited by 7 other entries.
-
A conserved family of Saccharomyces cerevisiae synthases effects dihydrouridine modification of tRNA.
Xing F., Martzen M.R., Phizicky E.M.
Dihydrouridine modification of tRNA is widely observed in prokaryotes and eukaryotes, as well as in some archaea. In Saccharomyces cerevisiae every sequenced tRNA has at least one such modification, and all but one have two or more. We have used a biochemical genomics approach to identify the gene ... >> More
Dihydrouridine modification of tRNA is widely observed in prokaryotes and eukaryotes, as well as in some archaea. In Saccharomyces cerevisiae every sequenced tRNA has at least one such modification, and all but one have two or more. We have used a biochemical genomics approach to identify the gene encoding dihydrouridine synthase 1 (Dus1, ORF YML080w), using yeast pre-tRNA(Phe) as a substrate. Dus1 is a member of a widespread family of conserved proteins, three other members of which are found in yeast: YNR015w, YLR405w, and YLR401c. We show that one of these proteins, Dus2, encoded by ORF YNR015w, has activity with two other substrates: yeast pre-tRNA(Tyr) and pre-tRNA(Leu). Both Dus1 and Dus2 are active as a single subunit protein expressed and purified from Escherichia coli, and the activity of both is stimulated in the presence of flavin adenine dinucleotide. Dus1 modifies yeast pre-tRNA(Phe) in vitro at U17, one of the two positions that are known to bear this modification in vivo. Yeast extract from a dus1-A strain is completely defective in modification of yeast pre-tRNAPhe, and RNA isolated from dus1-delta and dus2-delta strains is significantly depleted in dihydrouridine content. << Less
RNA 8:370-381(2002) [PubMed] [EuropePMC]
This publication is cited by 7 other entries.
-
Mechanism of dihydrouridine synthase 2 from yeast and the importance of modifications for efficient tRNA reduction.
Rider L.W., Ottosen M.B., Gattis S.G., Palfey B.A.
Dihydrouridine synthases (DUSs) are flavin-dependent enzymes that catalyze site-specific reduction of uracils in tRNAs. The mechanism of DUS 2 from Saccharomyces cerevisiae was studied. Previously published turnover rates for this DUS were very low. Our studies show that the catalytic cycle consis ... >> More
Dihydrouridine synthases (DUSs) are flavin-dependent enzymes that catalyze site-specific reduction of uracils in tRNAs. The mechanism of DUS 2 from Saccharomyces cerevisiae was studied. Previously published turnover rates for this DUS were very low. Our studies show that the catalytic cycle consists of reductive and oxidative half-reactions. The enzyme is reduced by NADPH rapidly but has a very slow oxidative half-reaction using in vitro transcribed tRNA substrates. Using tRNA(Leu) purified from a DUS 2 knockout strain of yeast we obtained reaction rate enhancements of 600-fold over in vitro transcribed substrates, indicating that other RNA modifications are required for rapid uracil reduction. This demonstrates a previously unknown ordering of modifications and indicates that dihydrouridine formation is a later step in tRNA maturation. We also show that an active site cysteine is important for catalysis, likely in the protonation of uracil during tRNA reduction. Dihydrouridine of modified tRNA from Escherichia coli was also oxidized to uridine showing the reaction to be reversible. << Less
J Biol Chem 284:10324-10333(2009) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
The specificities of four yeast dihydrouridine synthases for cytoplasmic tRNAs.
Xing F., Hiley S.L., Hughes T.R., Phizicky E.M.
Dihydrouridine is a highly abundant modified nucleoside found widely in tRNAs of eubacteria, eukaryotes, and some archaea. In cytoplasmic tRNA of Saccharomyces cerevisiae, dihydrouridine occurs exclusively at positions 16, 17, 20, 20A, 20B, and 47. Here we show that the known dihydrouridine syntha ... >> More
Dihydrouridine is a highly abundant modified nucleoside found widely in tRNAs of eubacteria, eukaryotes, and some archaea. In cytoplasmic tRNA of Saccharomyces cerevisiae, dihydrouridine occurs exclusively at positions 16, 17, 20, 20A, 20B, and 47. Here we show that the known dihydrouridine synthases Dus1p and Dus2p and two previously uncharacterized homologs, Dus3p (encoded by YLR401c) and Dus4p (YLR405w), are required for all of the dihydrouridine modification of cytoplasmic tRNAs in S. cerevisiae. We have mapped the in vivo position specificity of the four Dus proteins, by three complementary approaches: determination of the molar ratio of dihydrouridine in purified tRNAs from different dus mutants; microarray analysis of a large number of tRNAs based on differential hybridization of uridine and dihydrouridine-containing tRNAs to the complementary oligonucleotides; and the development and use of a novel dihydrouridine mapping technique, employing primer extension. We show that each of the four Dus proteins has a distinct position specificity: Dus1p for U(16) and U(17), Dus2p for U(20), Dus3p for U(47), and Dus4p for U(20a) and U(20b). << Less
J. Biol. Chem. 279:17850-17860(2004) [PubMed] [EuropePMC]
This publication is cited by 11 other entries.
-
Identification of the tRNA-dihydrouridine synthase family.
Bishop A.C., Xu J., Johnson R.C., Schimmel P., de Crecy-Lagard V.
5,6-Dihydrouridine (D) is a modified base found abundantly in the D-loops of tRNA from Archaea, Bacteria, and Eukarya. D is thought to be formed post-transcriptionally by the reduction of uridines in tRNA transcripts. Despite its abundance, no enzymes that catalyze D-formation have been identified ... >> More
5,6-Dihydrouridine (D) is a modified base found abundantly in the D-loops of tRNA from Archaea, Bacteria, and Eukarya. D is thought to be formed post-transcriptionally by the reduction of uridines in tRNA transcripts. Despite its abundance, no enzymes that catalyze D-formation have been identified. Using comparative genomics and computational methods we have identified members of the cluster of orthologous genes, COG0042, as putative dihydrouridine synthase encoding genes. Escherichia coli contains three COG0042 family members (yjbN, yhdG, and yohI). Strains were created where one, two, or all three of the COG0042 genes were deleted. Purified tRNA samples were investigated from the three single and the three double knockout strains, as well as from the triple deletion strain. The results showed that the COG0042 gene family is responsible for tRNA-dihydrouridine synthase activity in E. coli. They also suggest that the COG0042-encoded family members act site-specifically on the tRNA D-loop and contain non-redundant catalytic functions in vivo. << Less
J. Biol. Chem. 277:25090-25095(2002) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.
-
A novel human tRNA-dihydrouridine synthase involved in pulmonary carcinogenesis.
Kato T., Daigo Y., Hayama S., Ishikawa N., Yamabuki T., Ito T., Miyamoto M., Kondo S., Nakamura Y.
An increased level of dihydrouridine in tRNA(Phe) was found in human malignant tissues nearly three decades ago, but its biological significance in carcinogenesis has remained unclear. Through analysis of genome-wide gene-expression profiles among non-small cell lung carcinomas (NSCLC), we identif ... >> More
An increased level of dihydrouridine in tRNA(Phe) was found in human malignant tissues nearly three decades ago, but its biological significance in carcinogenesis has remained unclear. Through analysis of genome-wide gene-expression profiles among non-small cell lung carcinomas (NSCLC), we identified overexpression of a novel human gene, termed hDUS2, encoding a protein that shared structural features with tRNA-dihydrouridine synthases (DUS). The deduced 493-amino-acid sequence showed 39% homology to the dihydrouridine synthase 2 enzyme (Dus2) of Saccharomyces cerevisiae and contained a conserved double-strand RNA-binding motif (DSRM). We found that hDUS2 protein had tRNA-DUS activity and that it physically interacted with EPRS, a glutamyl-prolyl tRNA synthetase, and was likely to enhance translational efficiencies. A small interfering RNA against hDUS2 transfected into NSCLC cells suppressed expression of the gene, reduced the amount of dihydrouridine in tRNA molecules, and suppressed growth. Immunohistochemical analysis showed significant association between higher levels of hDUS2 in tumors and poorer prognosis of lung cancer patients. Our data imply that up-regulation of hDUS2 is a relatively common feature of pulmonary carcinogenesis and that selective suppression of hDUS2 enzyme activity and/or inhibition of formation of the hDUS2-tRNA synthetase complex could be a promising therapeutic strategy for treatment of many lung cancers. << Less
Cancer Res. 65:5638-5646(2005) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.