Reaction participants Show >> << Hide
- Name help_outline Ni-sirohydrochlorin a,c-diamide Identifier CHEBI:136887 Charge -6 Formula C42H40N6NiO14 InChIKeyhelp_outline RIGHEWUFSUWNMM-QIISWYHFSA-F SMILEShelp_outline C=12[C@H]([C@@](CC(N)=O)(C)C=3[N+]1[Ni-2]45N6C(C3)=C(C(CCC([O-])=O)=C6C=C7[N+]5=C(C=C8N4C(=C2)[C@]([C@@H]8CCC([O-])=O)(CC(N)=O)C)C(=C7CCC([O-])=O)CC([O-])=O)CC([O-])=O)CCC([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline AH2 Identifier CHEBI:17499 Charge 0 Formula RH2 SMILEShelp_outline *([H])[H] 2D coordinates Mol file for the small molecule Search links Involved in 2,812 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline ATP Identifier CHEBI:30616 (Beilstein: 3581767) help_outline Charge -4 Formula C10H12N5O13P3 InChIKeyhelp_outline ZKHQWZAMYRWXGA-KQYNXXCUSA-J SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,284 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,264 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 15,173-seco-F430-173-acid Identifier CHEBI:136888 Charge -5 Formula C42H47N6NiO14 InChIKeyhelp_outline HHAOAZMDQIXGKF-MYQROCLPSA-G SMILEShelp_outline [C@H]12[C@H]([C@@](CC(N)=O)(C)C3=[N+]1[Ni-2]45[N+]=6[C@H](C3)[C@H]([C@H](CCC([O-])=O)C6C=C7N5C(=CC8=[N+]4[C@]9(C2)[C@@]([C@@H]8CCC([O-])=O)(C)CC(N9)=O)[C@H]([C@@H]7CCC([O-])=O)CC([O-])=O)CC([O-])=O)CCC([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline A Identifier CHEBI:13193 Charge Formula R SMILEShelp_outline * 2D coordinates Mol file for the small molecule Search links Involved in 2,883 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline ADP Identifier CHEBI:456216 (Beilstein: 3783669) help_outline Charge -3 Formula C10H12N5O10P2 InChIKeyhelp_outline XTWYTFMLZFPYCI-KQYNXXCUSA-K SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 841 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline phosphate Identifier CHEBI:43474 Charge -2 Formula HO4P InChIKeyhelp_outline NBIIXXVUZAFLBC-UHFFFAOYSA-L SMILEShelp_outline OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 1,002 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:52900 | RHEA:52901 | RHEA:52902 | RHEA:52903 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
Biosynthesis of coenzyme F430 in methanogenic bacteria. Identification of 15,17(3)-seco-F430-17(3)-acid as an intermediate.
Pfaltz A., Kobelt A., Huster R., Thauer R.K.
Coenzyme F430 is a hydroporphinoid nickel complex present in all methanogenic bacteria. It is part of the enzyme system which catalyzes methane formation from methyl-coenzyme M. We describe here that under certain conditions a second nickel porphinoid accumulates in methanogenic bacteria. The comp ... >> More
Coenzyme F430 is a hydroporphinoid nickel complex present in all methanogenic bacteria. It is part of the enzyme system which catalyzes methane formation from methyl-coenzyme M. We describe here that under certain conditions a second nickel porphinoid accumulates in methanogenic bacteria. The compound was identified at 15,17(3)-seco-F430-17(3)-acid. The structural assignment rests on 14C-labelling experiments, fast-atom-bombardment mass spectra, 1H-NMR spectra of the corresponding hexamethyl ester, and ultraviolet/visible spectral comparison with model compounds. In cell extracts and in intact cells of methanogenic bacteria, 15,17(3)-seco-F430-17(3)-acid was converted to F430. These findings indicate that the new nickel-containing porphinoid is an intermediate in the biosynthesis of coenzyme F430. << Less
-
The biosynthetic pathway of coenzyme F430 in methanogenic and methanotrophic archaea.
Zheng K., Ngo P.D., Owens V.L., Yang X.P., Mansoorabadi S.O.
Methyl-coenzyme M reductase (MCR) is the key enzyme of methanogenesis and anaerobic methane oxidation. The activity of MCR is dependent on the unique nickel-containing tetrapyrrole known as coenzyme F430. We used comparative genomics to identify the coenzyme F430 biosynthesis (cfb) genes and chara ... >> More
Methyl-coenzyme M reductase (MCR) is the key enzyme of methanogenesis and anaerobic methane oxidation. The activity of MCR is dependent on the unique nickel-containing tetrapyrrole known as coenzyme F430. We used comparative genomics to identify the coenzyme F430 biosynthesis (cfb) genes and characterized the encoded enzymes from Methanosarcina acetivorans C2A. The pathway involves nickelochelation by a nickel-specific chelatase, followed by amidation to form Ni-sirohydrochlorin a,c-diamide. Next, a primitive homolog of nitrogenase mediates a six-electron reduction and γ-lactamization reaction before a Mur ligase homolog forms the six-membered carbocyclic ring in the final step of the pathway. These data show that coenzyme F430 can be synthesized from sirohydrochlorin using Cfb enzymes produced heterologously in a nonmethanogen host and identify several targets for inhibitors of biological methane formation. << Less
Science 354:339-342(2016) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.