Enzymes
UniProtKB help_outline | 2 proteins |
Enzyme class help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline choloyl-CoA Identifier CHEBI:57373 Charge -4 Formula C45H70N7O20P3S InChIKeyhelp_outline ZKWNOTQHFKYUNU-JGCIYWTLSA-J SMILEShelp_outline [H][C@@](C)(CCC(=O)SCCNC(=O)CCNC(=O)[C@H](O)C(C)(C)COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12)[C@@]1([H])CC[C@@]2([H])[C@]3([H])[C@H](O)C[C@]4([H])C[C@H](O)CC[C@]4(C)[C@@]3([H])C[C@H](O)[C@]12C 2D coordinates Mol file for the small molecule Search links Involved in 10 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NAD+ Identifier CHEBI:57540 (Beilstein: 3868403) help_outline Charge -1 Formula C21H26N7O14P2 InChIKeyhelp_outline BAWFJGJZGIEFAR-NNYOXOHSSA-M SMILEShelp_outline NC(=O)c1ccc[n+](c1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,190 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 7α,12α-dihydroxy-3-oxochol-24-oyl-CoA Identifier CHEBI:136700 Charge -4 Formula C45H68N7O20P3S InChIKeyhelp_outline DABYNUYNLLSQQV-QROUSYAVSA-J SMILEShelp_outline [C@@H]1(N2C3=C(C(=NC=N3)N)N=C2)O[C@H](COP(OP(OCC(C)([C@H](C(NCCC(NCCSC(=O)CC[C@@](C)([C@]4(CC[C@@]5([C@@]4([C@H](C[C@@]6([C@]7(CCC(C[C@]7(C[C@H]([C@@]56[H])O)[H])=O)C)[H])O)C)[H])[H])[H])=O)=O)O)C)(=O)[O-])(=O)[O-])[C@H]([C@H]1O)OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADH Identifier CHEBI:57945 (Beilstein: 3869564) help_outline Charge -2 Formula C21H27N7O14P2 InChIKeyhelp_outline BOPGDPNILDQYTO-NNYOXOHSSA-L SMILEShelp_outline NC(=O)C1=CN(C=CC1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,120 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:52588 | RHEA:52589 | RHEA:52590 | RHEA:52591 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
MetaCyc help_outline |
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Structural and functional characterization of BaiA, an enzyme involved in secondary bile acid synthesis in human gut microbe.
Bhowmik S., Jones D.H., Chiu H.P., Park I.H., Chiu H.J., Axelrod H.L., Farr C.L., Tien H.J., Agarwalla S., Lesley S.A.
Despite significant influence of secondary bile acids on human health and disease, limited structural and biochemical information is available for the key gut microbial enzymes catalyzing its synthesis. Herein, we report apo- and cofactor bound crystal structures of BaiA2, a short chain dehydrogen ... >> More
Despite significant influence of secondary bile acids on human health and disease, limited structural and biochemical information is available for the key gut microbial enzymes catalyzing its synthesis. Herein, we report apo- and cofactor bound crystal structures of BaiA2, a short chain dehydrogenase/reductase from Clostridium scindens VPI 12708 that represent the first protein structure of this pathway. The structures elucidated the basis of cofactor specificity and mechanism of proton relay. A conformational restriction involving Glu42 located in the cofactor binding site seems crucial in determining cofactor specificity. Limited flexibility of Glu42 results in imminent steric and electrostatic hindrance with 2'-phosphate group of NADP(H). Consistent with crystal structures, steady state kinetic characterization performed with both BaiA2 and BaiA1, a close homolog with 92% sequence identity, revealed specificity constant (kcat /KM ) of NADP(+) at least an order of magnitude lower than NAD(+) . Substitution of Glu42 with Ala improved specificity toward NADP(+) by 10-fold compared to wild type. The cofactor bound structure uncovered a novel nicotinamide-hydroxyl ion (NAD(+) -OH(-) ) adduct contraposing previously reported adducts. The OH(-) of the adduct in BaiA2 is distal to C4 atom of nicotinamide and proximal to 2'-hydroxyl group of the ribose moiety. Moreover, it is located at intermediary distances between terminal functional groups of active site residues Tyr157 (2.7 Å) and Lys161 (4.5 Å). Based on these observations, we propose an involvement of NAD(+) -OH(-) adduct in proton relay instead of hydride transfer as noted for previous adducts. << Less
Proteins 82:216-229(2014) [PubMed] [EuropePMC]
This publication is cited by 4 other entries.
-
A metabolic pathway for bile acid dehydroxylation by the gut microbiome.
Funabashi M., Grove T.L., Wang M., Varma Y., McFadden M.E., Brown L.C., Guo C., Higginbottom S., Almo S.C., Fischbach M.A.
The gut microbiota synthesize hundreds of molecules, many of which influence host physiology. Among the most abundant metabolites are the secondary bile acids deoxycholic acid (DCA) and lithocholic acid (LCA), which accumulate at concentrations of around 500 μM and are known to block the growth of ... >> More
The gut microbiota synthesize hundreds of molecules, many of which influence host physiology. Among the most abundant metabolites are the secondary bile acids deoxycholic acid (DCA) and lithocholic acid (LCA), which accumulate at concentrations of around 500 μM and are known to block the growth of Clostridium difficile<sup>1</sup>, promote hepatocellular carcinoma<sup>2</sup> and modulate host metabolism via the G-protein-coupled receptor TGR5 (ref. <sup>3</sup>). More broadly, DCA, LCA and their derivatives are major components of the recirculating pool of bile acids<sup>4</sup>; the size and composition of this pool are a target of therapies for primary biliary cholangitis and nonalcoholic steatohepatitis. Nonetheless, despite the clear impact of DCA and LCA on host physiology, an incomplete knowledge of their biosynthetic genes and a lack of genetic tools to enable modification of their native microbial producers limit our ability to modulate secondary bile acid levels in the host. Here we complete the pathway to DCA and LCA by assigning and characterizing enzymes for each of the steps in its reductive arm, revealing a strategy in which the A-B rings of the steroid core are transiently converted into an electron acceptor for two reductive steps carried out by Fe-S flavoenzymes. Using anaerobic in vitro reconstitution, we establish that a set of six enzymes is necessary and sufficient for the eight-step conversion of cholic acid to DCA. We then engineer the pathway into Clostridium sporogenes, conferring production of DCA and LCA on a nonproducing commensal and demonstrating that a microbiome-derived pathway can be expressed and controlled heterologously. These data establish a complete pathway to two central components of the bile acid pool. << Less
Nature 582:566-570(2020) [PubMed] [EuropePMC]
This publication is cited by 7 other entries.