Reaction participants Show >> << Hide
- Name help_outline 17β-estradiol Identifier CHEBI:16469 (Beilstein: 1914275; CAS: 50-28-2) help_outline Charge 0 Formula C18H24O2 InChIKeyhelp_outline VOXZDWNPVJITMN-ZBRFXRBCSA-N SMILEShelp_outline [H][C@]12CC[C@]3(C)[C@@H](O)CC[C@@]3([H])[C@]1([H])CCc1cc(O)ccc21 2D coordinates Mol file for the small molecule Search links Involved in 17 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline UDP-α-D-glucuronate Identifier CHEBI:58052 Charge -3 Formula C15H19N2O18P2 InChIKeyhelp_outline HDYANYHVCAPMJV-LXQIFKJMSA-K SMILEShelp_outline O[C@@H]1[C@@H](COP([O-])(=O)OP([O-])(=O)O[C@H]2O[C@@H]([C@@H](O)[C@H](O)[C@H]2O)C([O-])=O)O[C@H]([C@@H]1O)n1ccc(=O)[nH]c1=O 2D coordinates Mol file for the small molecule Search links Involved in 107 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 17β-estradiol 3-O-(β-D-glucuronate) Identifier CHEBI:136641 Charge -1 Formula C24H31O8 InChIKeyhelp_outline MUOHJTRCBBDUOW-QXYWQCSFSA-M SMILEShelp_outline O([C@H]1[C@@H]([C@H]([C@@H]([C@H](O1)C([O-])=O)O)O)O)C2=CC3=C([C@@]4([C@]([C@]5([C@@]([C@@H](O)CC5)(CC4)C)[H])(CC3)[H])[H])C=C2 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline UDP Identifier CHEBI:58223 Charge -3 Formula C9H11N2O12P2 InChIKeyhelp_outline XCCTYIAWTASOJW-XVFCMESISA-K SMILEShelp_outline O[C@@H]1[C@@H](COP([O-])(=O)OP([O-])([O-])=O)O[C@H]([C@@H]1O)n1ccc(=O)[nH]c1=O 2D coordinates Mol file for the small molecule Search links Involved in 576 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:52460 | RHEA:52461 | RHEA:52462 | RHEA:52463 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Specificity and regioselectivity of the conjugation of estradiol, estrone, and their catecholestrogen and methoxyestrogen metabolites by human uridine diphospho-glucuronosyltransferases expressed in endometrium.
Lepine J., Bernard O., Plante M., Tetu B., Pelletier G., Labrie F., Belanger A., Guillemette C.
Uridine diphospho-glucuronosyltransferases (UGTs) inactivate and facilitate the excretion of estrogens to glucuronides (-G), the most abundant circulating estrogen conjugates. The identity of the conjugated estrogens formed by all known overexpressed UGTs (n = 16) was analyzed by comparison with r ... >> More
Uridine diphospho-glucuronosyltransferases (UGTs) inactivate and facilitate the excretion of estrogens to glucuronides (-G), the most abundant circulating estrogen conjugates. The identity of the conjugated estrogens formed by all known overexpressed UGTs (n = 16) was analyzed by comparison with retention time and mass fragmentation of authentic standards by HPLC tandem mass spectrometry methods. Six UGTs, namely 1A1, 1A3, 1A8, 1A9, 1A10, and 2B7, were found to glucuronidate estradiol (E(2)) and estrone (E(1)), their hydroxyls (OH), and their methoxy derivatives (MeO). Addition of glucuronic acid was catalyzed by specific UGTs at positions 2, 3, and 4 of the estrogens, whereas only E(2) was conjugated at position 17 by UGT2B7. Kinetic parameters indicate that the conjugation of E(2) at position 3 was predominantly catalyzed by 1A1, 1A3, and 1A8 and by 1A8 for E(1). Conjugation of 2-OHE(1)/E(2) and 2- and 4-MeOE(1)/E(2) was selective at position 3, mostly catalyzed by 1A1 and 1A8. Of all UGTs, UGT2B7 demonstrated the highest catalytic activities for estrogens and at least 10-to 50-fold higher activity for the conjugation of genotoxic 4-hydroxycatecholestrogens at position 4, compared with the conjugation of E(2), E(1), and 2-hydroxycatecholestrogens. Its presence was further shown in the endometrium by RT-PCR and immunohistochemistry, localizing in the same cells expressing CYP1B1, involved locally in the formation of 4-hydroxycatecholestrogens. Data show that several UGT enzymes detected in the endometrium are involved in the glucuronidation of E(2) and its 2-OH, 4-OH, and 2-MeO metabolites that exert various biological effects in the tissue. << Less
J. Clin. Endocrinol. Metab. 89:5222-5232(2004) [PubMed] [EuropePMC]
This publication is cited by 13 other entries.
-
Regiospecificity and stereospecificity of human UDP-glucuronosyltransferases in the glucuronidation of estriol, 16-epiestriol, 17-epiestriol, and 13-epiestradiol.
Sneitz N., Vahermo M., Mosorin J., Laakkonen L., Poirier D., Finel M.
The glucuronidation of estriol, 16-epiestriol, and 17-epiestriol by the human UDP-glucuronosyltransferases (UGTs) of subfamilies 1A, 2A, and 2B was examined. UGT1A10 is highly active in the conjugation of the 3-OH in all these estriols, whereas UGT2B7 is the most active UGT toward one of the ring ... >> More
The glucuronidation of estriol, 16-epiestriol, and 17-epiestriol by the human UDP-glucuronosyltransferases (UGTs) of subfamilies 1A, 2A, and 2B was examined. UGT1A10 is highly active in the conjugation of the 3-OH in all these estriols, whereas UGT2B7 is the most active UGT toward one of the ring D hydroxyls, the 16-OH in estriol and 16-epiestriol, but the 17-OH in 17-epiestriol. Kinetic analyses indicated that the 17-OH configuration plays a major role in the affinity of UGT2B7 for estrogens. The glucuronidation of the different estriols by the human liver and intestine microsomes reflects the activity of UGT1A10 and UGT2B7 in combination with the tissues' difference in UGT1A10 expression. The UGT1A10 mutant 1A10-F93G exhibited much higher V(max) values than UGT1A10 in estriol and 17-epiestriol glucuronidation, but a significantly lower value in 16-epiestriol glucuronidation. To this study on estriol glucuronidation we have added experiments with 13-epiestradiol, a synthetic estradiol in which the spatial arrangement of the methyl on C18 and the hydroxyl on C17 is significantly different than in other estrogens. In comparison with estradiol glucuronidation, the C13 configuration change decreases the turnover of UGTs that conjugate the 3-OH, but increases it in UGTs that primarily conjugate the 17-OH. Unexpectedly, UGT2B17 exhibited similar conjugation rates of both the 17-OH and 3-OH of 13-espiestradiol. The combined results reveal the strong preference of UGT1A10 for the 3-OH of physiologic estrogens and the equivalently strong preference of UGT2B7 and UGT2B17 for the hydroxyls on ring D of such steroid hormones. << Less
Drug Metab. Dispos. 41:582-591(2013) [PubMed] [EuropePMC]
This publication is cited by 8 other entries.
-
The configuration of the 17-hydroxy group variably influences the glucuronidation of beta-estradiol and epiestradiol by human UDP-glucuronosyltransferases.
Itaeaho K., Mackenzie P.I., Ikushiro S., Miners J.O., Finel M.
The glucuronidation of 17beta-estradiol (beta-estradiol) and 17alpha-estradiol (epiestradiol) was studied to elucidate how the orientation of the 17-OH group affects conjugation at the 3-OH or the 17-OH of either diastereomer. Recombinant human UDP-glucuronosyltransferases (UGTs) UGT1A1, UGT1A3, U ... >> More
The glucuronidation of 17beta-estradiol (beta-estradiol) and 17alpha-estradiol (epiestradiol) was studied to elucidate how the orientation of the 17-OH group affects conjugation at the 3-OH or the 17-OH of either diastereomer. Recombinant human UDP-glucuronosyltransferases (UGTs) UGT1A1, UGT1A3, UGT1A7, UGT1A8, and UGT1A10 conjugated one or both diastereomers, mainly at the 3-OH. The activity of UGT1A4 was low and unique because it was directed merely toward the 17-OH of both aglycones. UGT1A10 exhibited particularly high estradiol glucuronidation activity, the rate and affinity of which were significantly higher in the case of beta-estradiol than with epiestradiol. UGT1A9 did not catalyze estradiol glucuronidation, but UGT1A9-catalyzed scopoletin glucuronidation was competitively inhibited by beta-estradiol. UGT2B4, UGT2B7, and UGT2B17 exclusively conjugated the estradiols at the 17-OH position in a highly stereoselective fashion. UGT2B4 was specific for epiestradiol; UGT2B7 glucuronidated both diastereomers, with high affinity for epiestradiol, whereas UGT2B17 only glucuronidated beta-estradiol. UGT2B15 glucuronidated both estradiols at the 3-OH, with a strong preference for epiestradiol. Human UGT2A1 and UGT2A2 glucuronidated both diastereoisomers at both hydroxyl groups. Microsomal studies revealed that human liver mainly yielded epiestradiol 17-O-glucuronide, and human intestine primarily yielded beta-estradiol 3-O-glucuronide, whereas rat liver preferentially formed beta-estradiol 17-O-glucuronide. Of the three recombinant rat UGTs that were examined in this study, rUGT2B1 was specific for the 17-OH of beta-estradiol, rUGT2B2 did not catalyze estradiol glucuronidation, whereas rUGT2B3 exhibited high activity toward the 17-OH in both diastereoisomers. The results show that although many UGTs can catalyze estradiol glucuronidation, there are marked differences in their kinetics, regioselectivity, and stereoselectivity. << Less
Drug Metab. Dispos. 36:2307-2315(2008) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.