Reaction participants Show >> << Hide
- Name help_outline L-arginine Identifier CHEBI:32682 Charge 1 Formula C6H15N4O2 InChIKeyhelp_outline ODKSFYDXXFIFQN-BYPYZUCNSA-O SMILEShelp_outline NC(=[NH2+])NCCC[C@H]([NH3+])C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 72 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline O2 Identifier CHEBI:15379 (CAS: 7782-44-7) help_outline Charge 0 Formula O2 InChIKeyhelp_outline MYMOFIZGZYHOMD-UHFFFAOYSA-N SMILEShelp_outline O=O 2D coordinates Mol file for the small molecule Search links Involved in 2,709 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
reduced [flavodoxin]
Identifier
RHEA-COMP:10622
Reactive part
help_outline
- Name help_outline FMNH2 Identifier CHEBI:57618 (Beilstein: 6258176) help_outline Charge -2 Formula C17H21N4O9P InChIKeyhelp_outline YTNIXZGTHTVJBW-SCRDCRAPSA-L SMILEShelp_outline Cc1cc2Nc3c([nH]c(=O)[nH]c3=O)N(C[C@H](O)[C@H](O)[C@H](O)COP([O-])([O-])=O)c2cc1C 2D coordinates Mol file for the small molecule Search links Involved in 794 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (Beilstein: 3587155; CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,204 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline L-citrulline Identifier CHEBI:57743 Charge 0 Formula C6H13N3O3 InChIKeyhelp_outline RHGKLRLOHDJJDR-BYPYZUCNSA-N SMILEShelp_outline NC(=O)NCCC[C@H]([NH3+])C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 17 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline nitric oxide Identifier CHEBI:16480 (CAS: 10102-43-9) help_outline Charge 0 Formula NO InChIKeyhelp_outline MWUXSHHQAYIFBG-UHFFFAOYSA-N SMILEShelp_outline [N]=O 2D coordinates Mol file for the small molecule Search links Involved in 23 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
oxidized [flavodoxin]
Identifier
RHEA-COMP:10623
Reactive part
help_outline
- Name help_outline FMN Identifier CHEBI:58210 Charge -3 Formula C17H18N4O9P InChIKeyhelp_outline ANKZYBDXHMZBDK-SCRDCRAPSA-K SMILEShelp_outline C12=NC([N-]C(C1=NC=3C(N2C[C@@H]([C@@H]([C@@H](COP(=O)([O-])[O-])O)O)O)=CC(=C(C3)C)C)=O)=O 2D coordinates Mol file for the small molecule Search links Involved in 804 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:52324 | RHEA:52325 | RHEA:52326 | RHEA:52327 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
NO formation by a catalytically self-sufficient bacterial nitric oxide synthase from Sorangium cellulosum.
Agapie T., Suseno S., Woodward J.J., Stoll S., Britt R.D., Marletta M.A.
The role of nitric oxide (NO) in the host response to infection and in cellular signaling is well established. Enzymatic synthesis of NO is catalyzed by the nitric oxide synthases (NOSs), which convert Arg into NO and citrulline using co-substrates O2 and NADPH. Mammalian NOS contains a flavin red ... >> More
The role of nitric oxide (NO) in the host response to infection and in cellular signaling is well established. Enzymatic synthesis of NO is catalyzed by the nitric oxide synthases (NOSs), which convert Arg into NO and citrulline using co-substrates O2 and NADPH. Mammalian NOS contains a flavin reductase domain (FAD and FMN) and a catalytic heme oxygenase domain (P450-type heme and tetrahydrobiopterin). Bacterial NOSs, while much less studied, were previously identified as only containing the heme oxygenase domain of the more complex mammalian NOSs. We report here on the characterization of a NOS from Sorangium cellulosum (both full-length, scNOS, and oxygenase domain, scNOSox). scNOS contains a catalytic, oxygenase domain similar to those found in the mammalian NOS and in other bacteria. Unlike the other bacterial NOSs reported to date, however, this protein contains a fused reductase domain. The scNOS reductase domain is unique for the entire NOS family because it utilizes a 2Fe2S cluster for electron transfer. scNOS catalytically produces NO and citrulline in the presence of either tetrahydrobiopterin or tetrahydrofolate. These results establish a bacterial electron transfer pathway used for biological NO synthesis as well as a unique flexibility in using different tetrahydropterin cofactors for this reaction. << Less
Proc Natl Acad Sci U S A 106:16221-16226(2009) [PubMed] [EuropePMC]
This publication is cited by 6 other entries.
-
Bacterial nitric-oxide synthases operate without a dedicated redox partner.
Gusarov I., Starodubtseva M., Wang Z.Q., McQuade L., Lippard S.J., Stuehr D.J., Nudler E.
Bacterial nitric-oxide (NO) synthases (bNOSs) are smaller than their mammalian counterparts. They lack an essential reductase domain that supplies electrons during NO biosynthesis. This and other structural peculiarities have raised doubts about whether bNOSs were capable of producing NO in vivo. ... >> More
Bacterial nitric-oxide (NO) synthases (bNOSs) are smaller than their mammalian counterparts. They lack an essential reductase domain that supplies electrons during NO biosynthesis. This and other structural peculiarities have raised doubts about whether bNOSs were capable of producing NO in vivo. Here we demonstrate that bNOS enzymes from Bacillus subtilis and Bacillus anthracis do indeed produce NO in living cells and accomplish this task by hijacking available cellular redox partners that are not normally committed to NO production. These "promiscuous" bacterial reductases also support NO synthesis by the oxygenase domain of mammalian NOS expressed in Escherichia coli. Our results suggest that bNOS is an early precursor of eukaryotic NOS and that it acquired its dedicated reductase domain later in evolution. This work also suggests that alternatively spliced forms of mammalian NOSs lacking their reductase domains could still be functional in vivo. On a practical side, bNOS-containing probiotic bacteria offer a unique advantage over conventional chemical NO donors in generating continuous, readily controllable physiological levels of NO, suggesting a possibility of utilizing such live NO donors for research and clinical needs. << Less
J Biol Chem 283:13140-13147(2008) [PubMed] [EuropePMC]
This publication is cited by 6 other entries.
-
Structure of a nitric oxide synthase heme protein from Bacillus subtilis.
Pant K., Bilwes A.M., Adak S., Stuehr D.J., Crane B.R.
Eukaryotic nitric oxide synthases (NOSs) produce nitric oxide to mediate intercellular signaling and protect against pathogens. Recently, proteins homologous to mammalian NOS oxygenase domains have been found in prokaryotes and one from Bacillus subtilis (bsNOS) has been demonstrated to produce ni ... >> More
Eukaryotic nitric oxide synthases (NOSs) produce nitric oxide to mediate intercellular signaling and protect against pathogens. Recently, proteins homologous to mammalian NOS oxygenase domains have been found in prokaryotes and one from Bacillus subtilis (bsNOS) has been demonstrated to produce nitric oxide [Adak, S., Aulak, K. S., and Stuehr, D. J. (2002) J. Biol. Chem. 277, 16167-16171]. We present structures of bsNOS complexed with the active cofactor tetrahydrofolate and the substrate L-arginine (L-Arg) or the intermediate N(omega)-hydroxy-L-arginine (NHA) to 1.9 or 2.2 A resolution, respectively. The bsNOS structure is similar to those of the mammalian NOS oxygenase domains (mNOS(ox)) except for the absence of an N-terminal beta-hairpin hook and zinc-binding region that interact with pterin and stabilize the mNOS(ox) dimer. Changes in patterns of residue conservation between bacterial and mammalian NOSs correlate to different binding modes for pterin side chains. Residue conservation on a surface patch surrounding an exposed heme edge indicates a likely interaction site for reductase proteins in all NOSs. The heme pockets of bsNOS and mNOS(ox) recognize L-Arg and NHA similarly, although a change from Val to Ile beside the substrate guanidinium may explain the 10-20-fold slower dissociation of product NO from the bacterial enzyme. Overall, these structures suggest that bsNOS functions naturally to produce nitrogen oxides from L-Arg and NHA in a pterin-dependent manner, but that the regulation and purpose of NO production by NOS may be quite different in B. subtilis than in mammals. << Less
Biochemistry 41:11071-11079(2002) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
Bacterial flavodoxins support nitric oxide production by Bacillus subtilis nitric-oxide synthase.
Wang Z.Q., Lawson R.J., Buddha M.R., Wei C.C., Crane B.R., Munro A.W., Stuehr D.J.
Unlike animal nitric-oxide synthases (NOSs), the bacterial NOS enzymes have no attached flavoprotein domain to reduce their heme and so must rely on unknown bacterial proteins for electrons. We tested the ability of two Bacillus subtilis flavodoxins (YkuN and YkuP) to support catalysis by purified ... >> More
Unlike animal nitric-oxide synthases (NOSs), the bacterial NOS enzymes have no attached flavoprotein domain to reduce their heme and so must rely on unknown bacterial proteins for electrons. We tested the ability of two Bacillus subtilis flavodoxins (YkuN and YkuP) to support catalysis by purified B. subtilis NOS (bsNOS). When an NADPH-utilizing bacterial flavodoxin reductase (FLDR) was added to reduce YkuP or YkuN, both supported NO synthesis from either L-arginine or N-hydroxyarginine and supported a linear nitrite accumulation over a 30-min reaction period. Rates of nitrite production were directly dependent on the ratio of YkuN or YkuP to bsNOS. However, the V/Km value for YkuN (5.2 x 10(5)) was about 20 times greater than that of YkuP (2.6 x 10(4)), indicating YkuN is more efficient in supporting bsNOS catalysis. YkuN that was either photo-reduced or prereduced by FLDR transferred an electron to the bsNOS ferric heme at rates similar to those measured for heme reduction in the animal NOSs. YkuN supported a similar NO synthesis activity by a different bacterial NOS (Deinococcus radiodurans) but not by any of the three mammalian NOS oxygenase domains nor by an insect NOS oxygenase domain. Our results establish YkuN as a kinetically competent redox partner for bsNOS and suggest that FLDR/flavodoxin proteins could function physiologically to support catalysis by bacterial NOSs. << Less
J Biol Chem 282:2196-2202(2007) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.
-
Direct evidence for nitric oxide production by a nitric-oxide synthase-like protein from Bacillus subtilis.
Adak S., Aulak K.S., Stuehr D.J.
Nitric-oxide synthases (NOSs) are widely distributed among prokaryotes and eukaryotes and have diverse functions in physiology. Recent genome sequencing revealed NOS-like protein in bacteria, but whether these proteins generate nitric oxide is unknown. We therefore cloned, expressed, and purified ... >> More
Nitric-oxide synthases (NOSs) are widely distributed among prokaryotes and eukaryotes and have diverse functions in physiology. Recent genome sequencing revealed NOS-like protein in bacteria, but whether these proteins generate nitric oxide is unknown. We therefore cloned, expressed, and purified a NOS-like protein from Bacillus subtilis (bsNOS) and characterized its catalytic parameters in both multiple and single turnover reactions. bsNOS was dimeric, bound l-Arg and 6R-tetrahydrobiopterin with similar affinity as mammalian NOS, and generated nitrite from l-Arg when incubated with NADPH and a mammalian NOS reductase domain. Stopped-flow analysis showed that ferrous bsNOS reacted with O(2) to form a transient heme Fe(II)O(2) species in the presence of either Arg or the reaction intermediate N-hydroxy-l-arginine. In the latter case, disappearance of the Fe(II)O(2) species was kinetically and quantitatively coupled to formation of a transient heme Fe(III)NO product, which then dissociated to form ferric bsNOS. This behavior mirrors mammalian NOS enzymes and unambiguously shows that bsNOS can generate NO. NO formation required a bound tetrahydropteridine, and the kinetic effects of this cofactor were consistent with it donating an electron to the Fe(II)O(2) intermediate during the reaction. Dissociation of the heme Fe(III)NO product was much slower in bsNOS than in mammalian NOS. This constrains allowable rates of ferric heme reduction by a protein redox partner and underscores the utility of using a tetrahydropteridine electron donor in bsNOS. << Less
J. Biol. Chem. 277:16167-16171(2002) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.
-
Identification of redox partners and development of a novel chimeric bacterial nitric oxide synthase for structure activity analyses.
Holden J.K., Lim N., Poulos T.L.
Production of nitric oxide (NO) by nitric oxide synthase (NOS) requires electrons to reduce the heme iron for substrate oxidation. Both FAD and FMN flavin groups mediate the transfer of NADPH derived electrons to NOS. Unlike mammalian NOS that contain both FAD and FMN binding domains within a sing ... >> More
Production of nitric oxide (NO) by nitric oxide synthase (NOS) requires electrons to reduce the heme iron for substrate oxidation. Both FAD and FMN flavin groups mediate the transfer of NADPH derived electrons to NOS. Unlike mammalian NOS that contain both FAD and FMN binding domains within a single polypeptide chain, bacterial NOS is only composed of an oxygenase domain and must rely on separate redox partners for electron transfer and subsequent activity. Here, we report on the native redox partners for Bacillus subtilis NOS (bsNOS) and a novel chimera that promotes bsNOS activity. By identifying and characterizing native redox partners, we were also able to establish a robust enzyme assay for measuring bsNOS activity and inhibition. This assay was used to evaluate a series of established NOS inhibitors. Using the new assay for screening small molecules led to the identification of several potent inhibitors for which bsNOS-inhibitor crystal structures were determined. In addition to characterizing potent bsNOS inhibitors, substrate binding was also analyzed using isothermal titration calorimetry giving the first detailed thermodynamic analysis of substrate binding to NOS. << Less
J Biol Chem 289:29437-29445(2014) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
Comments
Multi-step reaction: RHEA:52328 and RHEA:52332