Enzymes
UniProtKB help_outline | 1 proteins |
Reaction participants Show >> << Hide
- Name help_outline glandicoline B Identifier CHEBI:134347 Charge 0 Formula C22H21N5O4 InChIKeyhelp_outline YEVSOYBNHBOQJZ-GCTRCSCRSA-N SMILEShelp_outline [C@@]123N(/C(=C/C=4N=CNC4)/C(N1)=O)C(C(O)=C[C@@]2(C=5C=CC=CC5N3O)C(C=C)(C)C)=O 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline S-adenosyl-L-methionine Identifier CHEBI:59789 Charge 1 Formula C15H23N6O5S InChIKeyhelp_outline MEFKEPWMEQBLKI-AIRLBKTGSA-O SMILEShelp_outline C[S+](CC[C@H]([NH3+])C([O-])=O)C[C@H]1O[C@H]([C@H](O)[C@@H]1O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 868 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline meleagrin Identifier CHEBI:70399 (CAS: 71751-77-4) help_outline Charge 0 Formula C23H23N5O4 InChIKeyhelp_outline JTJJJLSLKZFEPJ-WSHSOXHMSA-N SMILEShelp_outline CON1c2ccccc2[C@]2(C=C(O)C(=O)N3\C(=C\c4c[nH]cn4)C(=O)N[C@]123)C(C)(C)C=C 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline S-adenosyl-L-homocysteine Identifier CHEBI:57856 Charge 0 Formula C14H20N6O5S InChIKeyhelp_outline ZJUKTBDSGOFHSH-WFMPWKQPSA-N SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](CSCC[C@H]([NH3+])C([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 792 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:51732 | RHEA:51733 | RHEA:51734 | RHEA:51735 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
MetaCyc help_outline |
Publications
-
A branched biosynthetic pathway is involved in production of roquefortine and related compounds in Penicillium chrysogenum.
Ali H., Ries M.I., Nijland J.G., Lankhorst P.P., Hankemeier T., Bovenberg R.A., Vreeken R.J., Driessen A.J.
Profiling and structural elucidation of secondary metabolites produced by the filamentous fungus Penicillium chrysogenum and derived deletion strains were used to identify the various metabolites and enzymatic steps belonging to the roquefortine/meleagrin pathway. Major abundant metabolites of thi ... >> More
Profiling and structural elucidation of secondary metabolites produced by the filamentous fungus Penicillium chrysogenum and derived deletion strains were used to identify the various metabolites and enzymatic steps belonging to the roquefortine/meleagrin pathway. Major abundant metabolites of this pathway were identified as histidyltryptophanyldiketopiperazine (HTD), dehydrohistidyltryptophanyldi-ketopiperazine (DHTD), roquefortine D, roquefortine C, glandicoline A, glandicoline B and meleagrin. Specific genes could be assigned to each enzymatic reaction step. The nonribosomal peptide synthetase RoqA accepts L-histidine and L-tryptophan as substrates leading to the production of the diketopiperazine HTD. DHTD, previously suggested to be a degradation product of roquefortine C, was found to be derived from HTD involving the cytochrome P450 oxidoreductase RoqR. The dimethylallyltryptophan synthetase RoqD prenylates both HTD and DHTD yielding directly the products roquefortine D and roquefortine C without the synthesis of a previously suggested intermediate and the involvement of RoqM. This leads to a branch in the otherwise linear pathway. Roquefortine C is subsequently converted into glandicoline B with glandicoline A as intermediates, involving two monooxygenases (RoqM and RoqO) which were mixed up in an earlier attempt to elucidate the biosynthetic pathway. Eventually, meleagrin is produced from glandicoline B involving a methyltransferase (RoqN). It is concluded that roquefortine C and meleagrin are derived from a branched biosynthetic pathway. << Less
-
A single cluster of coregulated genes encodes the biosynthesis of the mycotoxins roquefortine C and meleagrin in Penicillium chrysogenum.
Garcia-Estrada C., Ullan R.V., Albillos S.M., Fernandez-Bodega M.A., Durek P., von Doehren H., Martin J.F.
A single gene cluster of Penicillium chrysogenum contains genes involved in the biosynthesis and secretion of the mycotoxins roquefortine C and meleagrin. Five of these genes have been silenced by RNAi. Pc21g15480 (rds) encodes a nonribosomal cyclodipeptide synthetase for the biosynthesis of both ... >> More
A single gene cluster of Penicillium chrysogenum contains genes involved in the biosynthesis and secretion of the mycotoxins roquefortine C and meleagrin. Five of these genes have been silenced by RNAi. Pc21g15480 (rds) encodes a nonribosomal cyclodipeptide synthetase for the biosynthesis of both roquefortine C and meleagrin. Pc21g15430 (rpt) encodes a prenyltransferase also required for the biosynthesis of both mycotoxins. Silencing of Pc21g15460 or Pc21g15470 led to a decrease in roquefortine C and meleagrin, whereas silencing of the methyltransferase gene (Pc21g15440; gmt) resulted in accumulation of glandicolin B, indicating that this enzyme catalyzes the conversion of glandicolin B to meleagrin. All these genes are transcriptionally coregulated. Our results prove that roquefortine C and meleagrin derive from a single pathway. << Less