Enzymes
UniProtKB help_outline | 577 proteins |
Enzyme class help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline 4-(trimethylamino)butanoyl-CoA Identifier CHEBI:61513 Charge -3 Formula C28H46N8O17P3S InChIKeyhelp_outline QAMRRBGWSPTAEJ-SVHODSNWSA-K SMILEShelp_outline CC(C)(COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)CCC[N+](C)(C)C 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
oxidized [electron-transfer flavoprotein]
Identifier
RHEA-COMP:10685
Reactive part
help_outline
- Name help_outline FAD Identifier CHEBI:57692 Charge -3 Formula C27H30N9O15P2 InChIKeyhelp_outline IMGVNJNCCGXBHD-UYBVJOGSSA-K SMILEShelp_outline Cc1cc2nc3c(nc(=O)[n-]c3=O)n(C[C@H](O)[C@H](O)[C@H](O)COP([O-])(=O)OP([O-])(=O)OC[C@H]3O[C@H]([C@H](O)[C@@H]3O)n3cnc4c(N)ncnc34)c2cc1C 2D coordinates Mol file for the small molecule Search links Involved in 170 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline crotonobetainyl-CoA Identifier CHEBI:60933 Charge -3 Formula C28H44N8O17P3S InChIKeyhelp_outline WAUPBDVHJXXZGW-HXPULJKESA-K SMILEShelp_outline CC(C)(COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)\C=C\C[N+](C)(C)C 2D coordinates Mol file for the small molecule Search links Involved in 4 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
reduced [electron-transfer flavoprotein]
Identifier
RHEA-COMP:10686
Reactive part
help_outline
- Name help_outline FADH2 Identifier CHEBI:58307 Charge -2 Formula C27H33N9O15P2 InChIKeyhelp_outline YPZRHBJKEMOYQH-UYBVJOGSSA-L SMILEShelp_outline Cc1cc2Nc3c([nH]c(=O)[nH]c3=O)N(C[C@H](O)[C@H](O)[C@H](O)COP([O-])(=O)OP([O-])(=O)OC[C@H]3O[C@H]([C@H](O)[C@@H]3O)n3cnc4c(N)ncnc34)c2cc1C 2D coordinates Mol file for the small molecule Search links Involved in 161 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:51584 | RHEA:51585 | RHEA:51586 | RHEA:51587 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
MetaCyc help_outline | ||||
EcoCyc help_outline |
Publications
-
Crotonobetaine reductase from Escherichia coli consists of two proteins.
Preusser A., Wagner U., Elssner T., Kleber H.-P.
Crotonobetaine reductase from Escherichia coli is composed of two proteins (component I (CI) and component II (CII)). CI has been purified to electrophoretic homogeneity from a cell-free extract of E. coli O44 K74. The purified protein shows l(-)-carnitine dehydratase activity and its N-terminal a ... >> More
Crotonobetaine reductase from Escherichia coli is composed of two proteins (component I (CI) and component II (CII)). CI has been purified to electrophoretic homogeneity from a cell-free extract of E. coli O44 K74. The purified protein shows l(-)-carnitine dehydratase activity and its N-terminal amino acid sequence is identical to the caiB gene product from E. coli O44 K74. The relative molecular mass of CI has been determined to be 86100. It is composed of two identical subunits with a molecular mass of 42600. The isoelectric point of CI was found to be 4.3. CII was purified from an overexpression strain in one step by ion exchange chromatography on Fractogel EMD TMAE 650(S). The N-terminal amino acid sequence of CII shows absolute identity with the N-terminal sequence of the caiA gene product, i.e. of the postulated crotonobetaine reductase. The relative molecular mass of the protein is 164400 and it is composed of four identical subunits of molecular mass 41500. The isoelectric point of CII is 5.6. CII contains non-covalently bound FAD in a molar ratio of 1:1. In the crotonobetaine reductase reaction one dimer of CI associates with one tetramer of CII. A still unknown low-molecular-mass effector described for the l(-)-carnitine dehydratase is also necessary for crotonobetaine reductase activity. Monoclonal antibodies were raised against the two components of crotonobetaine reductase. << Less
Biochim. Biophys. Acta 1431:166-178(1999) [PubMed] [EuropePMC]
-
The fixA and fixB genes are necessary for anaerobic carnitine reduction in Escherichia coli.
Walt A., Kahn M.L.
In Escherichia coli, the use of carnitine as a terminal electron acceptor depends on a functional caiTABCDE operon. It had been suggested that the adjacent but divergent fixABCX operon is also required for carnitine metabolism, perhaps to provide electrons for carnitine reduction. We have construc ... >> More
In Escherichia coli, the use of carnitine as a terminal electron acceptor depends on a functional caiTABCDE operon. It had been suggested that the adjacent but divergent fixABCX operon is also required for carnitine metabolism, perhaps to provide electrons for carnitine reduction. We have constructed E. coli fixA and fixB mutants and find that they are unable to reduce carnitine to gamma-butyrobetaine under anaerobic conditions. << Less
J. Bacteriol. 184:4044-4047(2002) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Crotonobetaine reductase from Escherichia coli--a new inducible enzyme of anaerobic metabolization of L(-)-carnitine.
Roth S., Jung K., Jung H., Hommel R.K., Kleber H.P.
Crotonobetaine reductase from Escherichia coli 044 K74 is an inducible enzyme detectable only in cells grown anaerobically in the presence of L(-)-carnitine or crotonobetaine as inducers. Enzyme activity was not detected in cells cultivated in the presence of inducer plus glucose, nitrate, gamma-b ... >> More
Crotonobetaine reductase from Escherichia coli 044 K74 is an inducible enzyme detectable only in cells grown anaerobically in the presence of L(-)-carnitine or crotonobetaine as inducers. Enzyme activity was not detected in cells cultivated in the presence of inducer plus glucose, nitrate, gamma-butyrobetaine or oxygen, respectively. Fumarate caused an additional stimulation of growth and an increased expression of crotonobetaine reductase. The reaction product, gamma-butyrobetaine, was identified by autoradiography. Crotonobetaine reductase is localized in the cytoplasm, and has been characterized with respect to pH (pH 7.8) and temperature optimum (40-45 degrees C). The Km value for crotonobetaine was determined to be 1.1 x 10(-2M). gamma-Butyrobetaine, D(+)-carnitine and choline are inhibitors of crotonobetaine reduction. For gamma-butyrobetaine (Ki = 3 x 10(-5M)) a competitive inhibition type was determined. Various properties suggest that crotonobetaine reductase is different from other reductases of anaerobic respiration. << Less
-
Isolation, identification, and synthesis of gamma-butyrobetainyl-CoA and crotonobetainyl-CoA, compounds involved in carnitine metabolism of E. coli.
Elssner T., Hennig L., Frauendorf H., Haferburg D., Kleber H.P.
A still unknown low-molecular-mass cofactor essential for the activity of carnitine-metabolizing enzymes (e.g., L-carnitine dehydratase, crotonobetaine reductase) from E. coli has been purified to homogeneity from a cell-free extract of E. coli O44K74. The purity of the cofactor was confirmed by H ... >> More
A still unknown low-molecular-mass cofactor essential for the activity of carnitine-metabolizing enzymes (e.g., L-carnitine dehydratase, crotonobetaine reductase) from E. coli has been purified to homogeneity from a cell-free extract of E. coli O44K74. The purity of the cofactor was confirmed by HPLC analysis. Biosynthesis of the unknown compound was only observed when bacteria were cultivated anaerobically in the presence of L-carnitine or crotonobetaine. The determined properties, together with results obtained from UV-visible, (1)H NMR, and mass spectrometry, indicate that the compound in question is a new CoA derivative. The esterified compound was suggested to be gamma-butyrobetaine-a metabolite of carnitine metabolism of E. coli. Proof of structure was performed by chemical synthesis. Besides gamma-butyrobetainyl-CoA, a second new CoA derivative, crotonobetainyl-CoA, was also chemically synthesized. Both CoA derivatives were purified and their structures confirmed using NMR and mass spectrometry. Comparisons of structural data and of the chemical properties of gamma-butyrobetainyl-CoA, crotonobetainyl-CoA, and the isolated cofactor verified that the unknown compound is gamma-butyrobetainyl-CoA. The physical and chemical properties of gamma-butyrobetainyl-CoA and crotonobetainyl-CoA are similar to known CoA derivatives. << Less