Reaction participants Show >> << Hide
- Name help_outline a fatty acid Identifier CHEBI:28868 Charge -1 Formula CO2R SMILEShelp_outline [O-]C([*])=O 2D coordinates Mol file for the small molecule Search links Involved in 1,538 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline ATP Identifier CHEBI:30616 (Beilstein: 3581767) help_outline Charge -4 Formula C10H12N5O13P3 InChIKeyhelp_outline ZKHQWZAMYRWXGA-KQYNXXCUSA-J SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,284 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CoA Identifier CHEBI:57287 (Beilstein: 11604429) help_outline Charge -4 Formula C21H32N7O16P3S InChIKeyhelp_outline RGJOEKWQDUBAIZ-IBOSZNHHSA-J SMILEShelp_outline CC(C)(COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12)[C@@H](O)C(=O)NCCC(=O)NCCS 2D coordinates Mol file for the small molecule Search links Involved in 1,511 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline a fatty acyl-CoA Identifier CHEBI:77636 Charge -4 Formula C22H31N7O17P3SR SMILEShelp_outline CC(C)(COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12)[C@@H](O)C(=O)NCCC(=O)NCCSC([*])=O 2D coordinates Mol file for the small molecule Search links Involved in 1,289 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline AMP Identifier CHEBI:456215 Charge -2 Formula C10H12N5O7P InChIKeyhelp_outline UDMBCSSLTHHNCD-KQYNXXCUSA-L SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 512 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline diphosphate Identifier CHEBI:33019 (Beilstein: 185088) help_outline Charge -3 Formula HO7P2 InChIKeyhelp_outline XPPKVPWEQAFLFU-UHFFFAOYSA-K SMILEShelp_outline OP([O-])(=O)OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 1,139 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:51580 | RHEA:51581 | RHEA:51582 | RHEA:51583 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
Related reactions help_outline
Specific form(s) of this reaction
-
RHEA:51856
(E)-hexadec-2-enoate(out) + ATP(in) + CoA(in) + H+(out) = (2E)-hexadecenoyl-CoA(in) + AMP(in) + diphosphate(in) + H+(in)
-
RHEA:51852
(9Z,12Z)-octadecadienoate(out) + ATP(in) + CoA(in) + H+(out) = (9Z,12Z)-octadecadienoyl-CoA(in) + AMP(in) + diphosphate(in) + H+(in)
-
RHEA:51844
(9Z)-hexadecenoate(out) + ATP(in) + CoA(in) + H+(out) = (9Z)-hexadecenoyl-CoA(in) + AMP(in) + diphosphate(in) + H+(in)
-
RHEA:51836
(9Z)-tetradecenoate(out) + ATP(in) + CoA(in) + H+(out) = (9Z)-tetradecenoyl-CoA(in) + AMP(in) + diphosphate(in) + H+(in)
-
RHEA:51832
tetracosanoate(out) + ATP(in) + CoA(in) + H+(out) = tetracosanoyl-CoA(in) + AMP(in) + diphosphate(in) + H+(in)
-
RHEA:51828
docosanoate(out) + ATP(in) + CoA(in) + H+(out) = docosanoyl-CoA(in) + AMP(in) + diphosphate(in) + H+(in)
-
RHEA:51824
octanoate(out) + ATP(in) + CoA(in) + H+(out) = octanoyl-CoA(in) + AMP(in) + diphosphate(in) + H+(in)
-
RHEA:51820
decanoate(out) + ATP(in) + CoA(in) + H+(out) = decanoyl-CoA(in) + AMP(in) + diphosphate(in) + H+(in)
-
RHEA:51816
dodecanoate(out) + ATP(in) + CoA(in) + H+(out) = dodecanoyl-CoA(in) + AMP(in) + diphosphate(in) + H+(in)
-
RHEA:51812
tetradecanoate(out) + ATP(in) + CoA(in) + H+(out) = tetradecanoyl-CoA(in) + AMP(in) + diphosphate(in) + H+(in)
-
RHEA:51808
(9Z)-octadecenoate(out) + ATP(in) + CoA(in) + H+(out) = (9Z)-octadecenoyl-CoA(in) + AMP(in) + diphosphate(in) + H+(in)
-
RHEA:51720
octadecanoate(out) + ATP(in) + CoA(in) + H+(out) = octadecanoyl-CoA(in) + AMP(in) + diphosphate(in) + H+(in)
-
RHEA:51716
hexadecanoate(out) + ATP(in) + CoA(in) + H+(out) = hexadecanoyl-CoA(in) + AMP(in) + diphosphate(in) + H+(in)
Publications
-
Biochemical studies of three Saccharomyces cerevisiae acyl-CoA synthetases, Faa1p, Faa2p, and Faa3p.
Knoll L.J., Johnson D.R., Gordon J.I.
The efficiency and specificity of protein N-myristoylation appear to be influenced by the availability of myristoyl-CoA and other potential acyl-CoA substrates of myristoyl-CoA:protein N-myristoyltransferase. Recent studies have revealed that Saccharomyces cerevisiae contains at least three acyl-C ... >> More
The efficiency and specificity of protein N-myristoylation appear to be influenced by the availability of myristoyl-CoA and other potential acyl-CoA substrates of myristoyl-CoA:protein N-myristoyltransferase. Recent studies have revealed that Saccharomyces cerevisiae contains at least three acyl-CoA synthetase genes (FAA for fatty acid activation). We have expressed Faa1p, Faa2p, and Faa3p in a strain of Escherichia coli that lacks its own endogenous acyl-CoA synthetase (FadD). Each S. cerevisiae acyl-CoA synthetase contained a carboxyl-terminal His tag so that it could be purified to homogeneity in a single step using nickel chelate affinity chromatography. In vitro assays of C3:0-C24:0 fatty acids indicate that Faa1p prefers C12:0-C16:0, with myristic and pentadecanoic acid (C15:0) having the highest activities. Faa2p can accommodate a wider range of acyl chain lengths: C9:0-C13:0 are preferred and have equivalent activities, although C7:0-C17:0 fatty acids are tolerated as substrates with no greater than a 2-fold variation in specific activity. The myristoyl-CoA synthetase activities of Faa1p and Faa2p are 2 orders of magnitude greater than that of Faa3p in vitro. Faa3p has a preference for C16 and C18 fatty acids with a cis-double bond at C-9-C-10. The temperature optimum for Faa1p is 30 degrees C, while Faa2p and Faa3p have the greatest activities at 25 degrees C. These in vitro observations were confirmed using two in vivo assays: (i) measurement of the ability of each S. cerevisiae acyl-CoA synthetase to direct the incorporation of exogenously derived tritiated myristate, palmitate, or oleate into cellular phospholipids produced in a fadD-strain of E. coli during exponential growth at 24 or 37 degrees C and (ii) measurement of the incorporation of [3H]myristate into a yeast N-myristoylprotein coexpressed with Nmt1p and Faa1p, Faa2p, or Faa3p in the fadD-strain. << Less
J. Biol. Chem. 269:16348-16356(1994) [PubMed] [EuropePMC]
This publication is cited by 19 other entries.
-
Functional role of fatty acyl-coenzyme A synthetase in the transmembrane movement and activation of exogenous long-chain fatty acids. Amino acid residues within the ATP/AMP signature motif of Escherichia coli FadD are required for enzyme activity and fatty acid transport.
Weimar J.D., DiRusso C.C., Delio R., Black P.N.
Fatty acyl-CoA synthetase (FACS, fatty acid:CoA ligase, AMP forming; EC ) plays a central role in intermediary metabolism by catalyzing the formation of fatty acyl-CoA. In Escherichia coli this enzyme, encoded by the fadD gene, is required for the coupled import and activation of exogenous long-ch ... >> More
Fatty acyl-CoA synthetase (FACS, fatty acid:CoA ligase, AMP forming; EC ) plays a central role in intermediary metabolism by catalyzing the formation of fatty acyl-CoA. In Escherichia coli this enzyme, encoded by the fadD gene, is required for the coupled import and activation of exogenous long-chain fatty acids. The E. coli FACS (FadD) contains two sequence elements, which comprise the ATP/AMP signature motif ((213)YTGGTTGVAKGA(224) and (356)GYGLTE(361)) placing it in the superfamily of adenylate-forming enzymes. A series of site-directed mutations were generated in the fadD gene within the ATP/AMP signature motif site to evaluate the role of this conserved region to enzyme function and to fatty acid transport. This approach revealed two major classes of fadD mutants with depressed enzyme activity: 1) those with 25-45% wild type activity (fadD(G216A), fadD(T217A), fadD(G219A), and fadD(K222A)) and 2) those with 10% or less wild-type activity (fadD(Y213A), fadD(T214A), and fadD(E361A)). Using anti-FadD sera, Western blots demonstrated the different mutant forms of FadD that were present and had localization patterns equivalent to the wild type. The defect in the first class was attributed to a reduced catalytic efficiency although several mutant forms also had a reduced affinity for ATP. The mutations resulting in these biochemical phenotypes reduced or essentially eliminated the transport of exogenous long-chain fatty acids. These data support the hypothesis that the FACS FadD functions in the vectorial movement of exogenous fatty acids across the plasma membrane by acting as a metabolic trap, which results in the formation of acyl-CoA esters. << Less
J. Biol. Chem. 277:29369-29376(2002) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Transmembrane movement of exogenous long-chain fatty acids: proteins, enzymes, and vectorial esterification.
Black P.N., DiRusso C.C.
The processes that govern the regulated transport of long-chain fatty acids across the plasma membrane are quite distinct compared to counterparts involved in the transport of hydrophilic solutes such as sugars and amino acids. These differences stem from the unique physical and chemical propertie ... >> More
The processes that govern the regulated transport of long-chain fatty acids across the plasma membrane are quite distinct compared to counterparts involved in the transport of hydrophilic solutes such as sugars and amino acids. These differences stem from the unique physical and chemical properties of long-chain fatty acids. To date, several distinct classes of proteins have been shown to participate in the transport of exogenous long-chain fatty acids across the membrane. More recent work is consistent with the hypothesis that in addition to the role played by proteins in this process, there is a diffusional component which must also be considered. Central to the development of this hypothesis are the appropriate experimental systems, which can be manipulated using the tools of molecular genetics. Escherichia coli and Saccharomyces cerevisiae are ideally suited as model systems to study this process in that both (i) exhibit saturable long-chain fatty acid transport at low ligand concentrations, (ii) have specific membrane-bound and membrane-associated proteins that are components of the transport apparatus, and (iii) can be easily manipulated using the tools of molecular genetics. In both systems, central players in the process of fatty acid transport are fatty acid transport proteins (FadL or Fat1p) and fatty acyl coenzyme A (CoA) synthetase (FACS; fatty acid CoA ligase [AMP forming] [EC 6.2.1.3]). FACS appears to function in concert with FadL (bacteria) or Fat1p (yeast) in the conversion of the free fatty acid to CoA thioesters concomitant with transport, thereby rendering this process unidirectional. This process of trapping transported fatty acids represents one fundamental mechanism operational in the transport of exogenous fatty acids. << Less
Microbiol Mol Biol Rev 67:454-472(2003) [PubMed] [EuropePMC]