Enzymes
UniProtKB help_outline | 16 proteins |
Enzyme class help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline H2O Identifier CHEBI:15377 (Beilstein: 3587155; CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,204 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline L-arginine Identifier CHEBI:32682 Charge 1 Formula C6H15N4O2 InChIKeyhelp_outline ODKSFYDXXFIFQN-BYPYZUCNSA-O SMILEShelp_outline NC(=[NH2+])NCCC[C@H]([NH3+])C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 72 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline O2 Identifier CHEBI:15379 (CAS: 7782-44-7) help_outline Charge 0 Formula O2 InChIKeyhelp_outline MYMOFIZGZYHOMD-UHFFFAOYSA-N SMILEShelp_outline O=O 2D coordinates Mol file for the small molecule Search links Involved in 2,709 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 5-guanidino-2-oxopentanoate Identifier CHEBI:58489 Charge 0 Formula C6H11N3O3 InChIKeyhelp_outline ARBHXJXXVVHMET-UHFFFAOYSA-N SMILEShelp_outline NC(=[NH2+])NCCCC(=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 11 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O2 Identifier CHEBI:16240 (Beilstein: 3587191; CAS: 7722-84-1) help_outline Charge 0 Formula H2O2 InChIKeyhelp_outline MHAJPDPJQMAIIY-UHFFFAOYSA-N SMILEShelp_outline [H]OO[H] 2D coordinates Mol file for the small molecule Search links Involved in 449 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NH4+ Identifier CHEBI:28938 (CAS: 14798-03-9) help_outline Charge 1 Formula H4N InChIKeyhelp_outline QGZKDVFQNNGYKY-UHFFFAOYSA-O SMILEShelp_outline [H][N+]([H])([H])[H] 2D coordinates Mol file for the small molecule Search links Involved in 528 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:51404 | RHEA:51405 | RHEA:51406 | RHEA:51407 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Related reactions help_outline
More general form(s) of this reaction
Publications
-
L-amino acid oxidases with specificity for basic L-amino acids in cyanobacteria.
Gau A.E., Heindl A., Nodop A., Kahmann U., Pistorius E.K.
The two closely related fresh water cyanobacteria Synechococcus elongatus PCC 6301 and Synechococcus elongatus PCC 7942 have previously been shown to constitutively express a FAD-containing L-amino acid oxidase with high specificity for basic L-amino acids (L-arginine being the best substrate). In ... >> More
The two closely related fresh water cyanobacteria Synechococcus elongatus PCC 6301 and Synechococcus elongatus PCC 7942 have previously been shown to constitutively express a FAD-containing L-amino acid oxidase with high specificity for basic L-amino acids (L-arginine being the best substrate). In this paper we show that such an enzyme is also present in the fresh water cyanobacterium Synechococcus cedrorum PCC 6908. In addition, an improved evaluation of the nucleotide/amino acid sequence of the L-amino acid oxidase of Synechococcus elongatus PCC 6301 (encoded by the aoxA gene) with respect to the FAD-binding site and a translocation pathway signal sequence will be given. Moreover, the genome sequences of 24 cyanobacteria will be evaluated for the occurrence of an aoxA-similar gene. In the evaluated cyanobacteria 15 genes encoding an L-amino acid oxidase-similar protein will be found. << Less
Z Naturforsch C J Biosci 62:273-284(2007) [PubMed] [EuropePMC]
-
Snake venom L-amino acid oxidases: trends in pharmacology and biochemistry.
Izidoro L.F., Sobrinho J.C., Mendes M.M., Costa T.R., Grabner A.N., Rodrigues V.M., da Silva S.L., Zanchi F.B., Zuliani J.P., Fernandes C.F., Calderon L.A., Stabeli R.G., Soares A.M.
L-amino acid oxidases are enzymes found in several organisms, including venoms of snakes, where they contribute to the toxicity of ophidian envenomation. Their toxicity is primarily due to enzymatic activity, but other mechanisms have been proposed recently which require further investigation. L-a ... >> More
L-amino acid oxidases are enzymes found in several organisms, including venoms of snakes, where they contribute to the toxicity of ophidian envenomation. Their toxicity is primarily due to enzymatic activity, but other mechanisms have been proposed recently which require further investigation. L-amino acid oxidases exert biological and pharmacological effects, including actions on platelet aggregation and the induction of apoptosis, hemorrhage, and cytotoxicity. These proteins present a high biotechnological potential for the development of antimicrobial, antitumor, and antiprotozoan agents. This review provides an overview of the biochemical properties and pharmacological effects of snake venom L-amino acid oxidases, their structure/activity relationship, and supposed mechanisms of action described so far. << Less
Biomed Res Int 2014:196754-196754(2014) [PubMed] [EuropePMC]
This publication is cited by 13 other entries.
-
L-Arginine oxidase from Pseudomonas sp. TPU 7192: Characterization, gene cloning, heterologous expression, and application to L-arginine determination.
Matsui D., Terai A., Asano Y.
L-Arginine oxidase (AROD, EC 1.4.3.-) was discovered in newly discovered Pseudomonas sp. TPU 7192 and its characteristics were described. The molecular mass (MS) of the enzyme was estimated to be 528 kDa, which was accounted for by eight identical subunits with MS of 66 kDa each. AROD was identifi ... >> More
L-Arginine oxidase (AROD, EC 1.4.3.-) was discovered in newly discovered Pseudomonas sp. TPU 7192 and its characteristics were described. The molecular mass (MS) of the enzyme was estimated to be 528 kDa, which was accounted for by eight identical subunits with MS of 66 kDa each. AROD was identified as a flavin adenine dinucleotide (FAD)-dependent enzyme with 1 mol of FAD being contained in each subunit. It catalyzed the oxidative deamination of L-arginine and converted L-arginine to 2-ketoarginine, which was non-enzymatically converted into 4-guanidinobutyric acid when the hydrogen peroxide (H2O2) formed by L-arginine oxidation was not removed. In contrast, 2-ketoarginine was present when H2O2was decomposed. AROD was specific to L-arginine with a Km value of 149 μM. It exhibited maximal activity at 55 °C and pH 5.5. AROD was stable in the pH range 5.5-7.5 and >95% of its original activity was below 60 °C at pH 7.0. Since these enzymatic properties are considered suitable for the determination of L-arginine, the gene was cloned and expressed in a heterologous expression system. We herein successfully developed a new simple enzymatic method for the determination of L-arginine using Pseudomonas AROD. << Less
-
Structural insights into selectivity and cofactor binding in snake venom L-amino acid oxidases.
Ullah A., Souza T.A., Abrego J.R., Betzel C., Murakami M.T., Arni R.K.
L-Amino acid oxidases (LAAOs) are flavoenzymes that catalytically deaminate L-amino acids to corresponding α-keto acids with the concomitant production of ammonia (NH(3)) and hydrogen peroxide (H(2)O(2)). Particularly, snake venom LAAOs have been attracted much attention due to their diverse clini ... >> More
L-Amino acid oxidases (LAAOs) are flavoenzymes that catalytically deaminate L-amino acids to corresponding α-keto acids with the concomitant production of ammonia (NH(3)) and hydrogen peroxide (H(2)O(2)). Particularly, snake venom LAAOs have been attracted much attention due to their diverse clinical and biological effects, interfering on human coagulation factors and being cytotoxic against some pathogenic bacteria and Leishmania ssp. In this work, a new LAAO from Bothrops jararacussu venom (BjsuLAAO) was purified, functionally characterized and its structure determined by X-ray crystallography at 3.1 Å resolution. BjsuLAAO showed high catalytic specificity for aromatic and aliphatic large side-chain amino acids. Comparative structural analysis with prokaryotic LAAOs, which exhibit low specificity, indicates the importance of the active-site volume in modulating enzyme selectivity. Surprisingly, the flavin adenine dinucleotide (FAD) cofactor was found in a different orientation canonically described for both prokaryotic and eukaryotic LAAOs. In this new conformational state, the adenosyl group is flipped towards the 62-71 loop, being stabilized by several hydrogen-bond interactions, which is equally stable to the classical binding mode. << Less
Biochem. Biophys. Res. Commun. 421:124-128(2012) [PubMed] [EuropePMC]
This publication is cited by 11 other entries.