Reaction participants Show >> << Hide
- Name help_outline (9Z,12Z)-octadecadienoate Identifier CHEBI:30245 (CAS: 1509-85-9) help_outline Charge -1 Formula C18H31O2 InChIKeyhelp_outline OYHQOLUKZRVURQ-HZJYTTRNSA-M SMILEShelp_outline CCCCC\C=C/C\C=C/CCCCCCCC([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 52 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline O2 Identifier CHEBI:15379 (CAS: 7782-44-7) help_outline Charge 0 Formula O2 InChIKeyhelp_outline MYMOFIZGZYHOMD-UHFFFAOYSA-N SMILEShelp_outline O=O 2D coordinates Mol file for the small molecule Search links Involved in 2,727 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline (13R)-hydroperoxy-(9Z,11E)-octadecadienoate Identifier CHEBI:133985 Charge -1 Formula C18H31O4 InChIKeyhelp_outline JDSRHVWSAMTSSN-PIHGWCCBSA-M SMILEShelp_outline C(CCCCCCC\C=C/C=C/[C@@H](CCCCC)OO)(=O)[O-] 2D coordinates Mol file for the small molecule Search links Involved in 4 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:51240 | RHEA:51241 | RHEA:51242 | RHEA:51243 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Kinetics of manganese lipoxygenase with a catalytic mononuclear redox center.
Su C., Sahlin M., Oliw E.H.
Manganese lipoxygenase was isolated from the take-all fungus, Gaeumannomyces graminis, and the oxygenation mechanism was investigated. A kinetic isotope effect, k(H)/k(D) = 21-24, was observed with [U-(2)H]linoleic acid as a substrate. The relative biosynthesis of (11S)-hydroperoxylinoleate (11S-H ... >> More
Manganese lipoxygenase was isolated from the take-all fungus, Gaeumannomyces graminis, and the oxygenation mechanism was investigated. A kinetic isotope effect, k(H)/k(D) = 21-24, was observed with [U-(2)H]linoleic acid as a substrate. The relative biosynthesis of (11S)-hydroperoxylinoleate (11S-HPODE) and (13R)-hydroperoxylinoleate (13R-HPODE) was pH-dependent and changed by [U-(2)H]linoleic acid. Stopped-flow kinetic traces of linoleic and alpha-linolenic acids indicated catalytic lag times of approximately 45 ms, which were followed by bursts of enzyme activity for approximately 60 ms and then by steady state (k(cat) approximately 26 and approximately 47 s(-1), respectively). 11S-HPODE was isomerized by manganese lipoxygenase to 13R-HPODE and formed from linoleic acid at the same rates (k(cat) 7-9 s(-1)). Catalysis was accompanied by collisional quenching of the long wavelength fluorescence (640-685 nm) by fatty acid substrates and 13R-HPODE. Electron paramagnetic resonance (EPR) of native manganese lipoxygenase showed weak 6-fold hyperfine splitting superimposed on a broad resonance indicating two populations of Mn(II) bound to protein. The addition of linoleic acid decreased both components, and denaturation of the lipoxygenase liberated approximately 0.8 Mn(2+) atoms/lipoxygenase molecule. These observations are consistent with a mononuclear Mn(II) center in the native state, which is converted during catalysis to an EPR silent Mn(III) state. We propose that manganese lipoxygenase has kinetic and redox properties similar to iron lipoxygenases. << Less
-
Secretion of two novel enzymes, manganese 9S-lipoxygenase and epoxy alcohol synthase, by the rice pathogen Magnaporthe salvinii.
Wennman A., Oliw E.H.
The mycelium of the rice stem pathogen, Magnaporthe salvinii, secreted linoleate 9S-lipoxygenase (9S-LOX) and epoxy alcohol synthase (EAS). The EAS rapidly transformed 9S-hydroperoxy-octadeca-10E,12Z-dienoic acid (9S-HPODE) to threo 10 (11)-epoxy-9S-hydroxy-12Z-octadecenoic acid, but other hydrope ... >> More
The mycelium of the rice stem pathogen, Magnaporthe salvinii, secreted linoleate 9S-lipoxygenase (9S-LOX) and epoxy alcohol synthase (EAS). The EAS rapidly transformed 9S-hydroperoxy-octadeca-10E,12Z-dienoic acid (9S-HPODE) to threo 10 (11)-epoxy-9S-hydroxy-12Z-octadecenoic acid, but other hydroperoxy FAs were poor substrates. 9S-LOX was expressed in Pichia pastoris. Recombinant 9S-LOX oxidized 18:2n-6 directly to 9S-HPODE, the end product, and also to two intermediates, 11S-hydroperoxy-9Z,12Z-octadecenoic acid (11S-HPODE; ∼5%) and 13R-hydroperoxy-9Z,11E-octadecadienoic acid (13R-HPODE; ∼1%). 11S- and 13R-HPODE were isomerized to 9S-HPODE, probably after oxidation to peroxyl radicals, β-fragmentation, and oxygen insertion at C-9. The 18:3n-3 was oxidized at C-9, C-11, and C-13, and to 9,16-dihydroxy-10E,12,14E-octadecatrienoic acid. 9S-LOX contained catalytic manganese (Mn:protein ∼0.2:1; Mn/Fe, 1:0.05), and its sequence could be aligned with 77% identity to 13R-LOX with catalytic manganese lipoxygenase (13R-MnLOX) of the Take-all fungus. The Leu350Met mutant of 9S-LOX shifted oxidation of 18:2n-6 from C-9 to C-13, and the Phe347Leu, Phe347Val, and Phe347Ala mutants of 13R-MnLOX from C-13 to C-9. In conclusion, M. salvinii secretes 9S-LOX with catalytic manganese along with a specific EAS. Alterations in the Sloane determinant of 9S-LOX and 13R-MnLOX with larger and smaller hydrophobic residues interconverted the regiospecific oxidation of 18:2n-6, presumably by altering the substrate position in relation to oxygen insertion. << Less
J. Lipid Res. 54:762-775(2013) [PubMed] [EuropePMC]
This publication is cited by 12 other entries.
-
Manganese lipoxygenase of F. oxysporum and the structural basis for biosynthesis of distinct 11-hydroperoxy stereoisomers.
Wennman A., Magnuson A., Hamberg M., Oliw E.H.
The biosynthesis of jasmonates in plants is initiated by 13S-lipoxygenase (LOX), but details of jasmonate biosynthesis by fungi, including Fusarium oxysporum, are unknown. The genome of F. oxysporum codes for linoleate 13S-LOX (FoxLOX) and for F. oxysporum manganese LOX (Fo-MnLOX), an uncharacteri ... >> More
The biosynthesis of jasmonates in plants is initiated by 13S-lipoxygenase (LOX), but details of jasmonate biosynthesis by fungi, including Fusarium oxysporum, are unknown. The genome of F. oxysporum codes for linoleate 13S-LOX (FoxLOX) and for F. oxysporum manganese LOX (Fo-MnLOX), an uncharacterized homolog of 13R-MnLOX of Gaeumannomyces graminis. We expressed Fo-MnLOX and compared its properties to Cg-MnLOX from Colletotrichum gloeosporioides. Electron paramagnetic resonance and metal analysis showed that Fo-MnLOX contained catalytic Mn. Fo-MnLOX oxidized 18:2n-6 mainly to 11R-hydroperoxyoctadecadienoic acid (HPODE), 13S-HPODE, and 9(S/R)-HPODE, whereas Cg-MnLOX produced 9S-, 11S-, and 13R-HPODE with high stereoselectivity. The 11-hydroperoxides did not undergo the rapid β-fragmentation earlier observed with 13R-MnLOX. Oxidation of [11S-(2)H]18:2n-6 by Cg-MnLOX was accompanied by loss of deuterium and a large kinetic isotope effect (>30). The Fo-MnLOX-catalyzed oxidation occurred with retention of the (2)H-label. Fo-MnLOX also oxidized 1-lineoyl-2-hydroxy-glycero-3-phosphatidylcholine. The predicted active site of all MnLOXs contains Phe except for Ser(348) in this position of Fo-MnLOX. The Ser348Phe mutant of Fo-MnLOX oxidized 18:2n-6 to the same major products as Cg-MnLOX. Our results suggest that Fo-MnLOX, with support of Ser(348), binds 18:2n-6 so that the proR rather than the proS hydrogen at C-11 interacts with the metal center, but retains the suprafacial oxygenation mechanism observed in other MnLOXs. << Less
J. Lipid Res. 56:1606-1615(2015) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.
-
Expression and characterization of manganese lipoxygenase of the rice blast fungus reveals prominent sequential lipoxygenation of alpha-linolenic acid.
Wennman A., Jerneren F., Magnuson A., Oliw E.H.
Magnaporthe oryzae causes rice blast disease and has become a model organism of fungal infections. M. oryzae can oxygenate fatty acids by 7,8-linoleate diol synthase, 10R-dioxygenase-epoxy alcohol synthase, and by a putative manganese lipoxygenase (Mo-MnLOX). The latter two are transcribed during ... >> More
Magnaporthe oryzae causes rice blast disease and has become a model organism of fungal infections. M. oryzae can oxygenate fatty acids by 7,8-linoleate diol synthase, 10R-dioxygenase-epoxy alcohol synthase, and by a putative manganese lipoxygenase (Mo-MnLOX). The latter two are transcribed during infection. The open reading frame of Mo-MnLOX was deduced from genome and cDNA analysis. Recombinant Mo-MnLOX was expressed in Pichia pastoris and purified to homogeneity. The enzyme contained protein-bound Mn and oxidized 18:2n-6 and 18:3n-3 to 9S-, 11-, and 13R-hydroperoxy metabolites by suprafacial hydrogen abstraction and oxygenation. The 11-hydroperoxides were subject to β-fragmentation with formation of 9S- and 13R-hydroperoxy fatty acids. Oxygen consumption indicated apparent kcat values of 2.8 s(-1) (18:2n-6) and 3.9 s(-1) (18:3n-3), and UV analysis yielded apparent Km values of 8 and 12 μM, respectively, for biosynthesis of cis-trans conjugated metabolites. 9S-Hydroperoxy-10E,12Z,15Z-octadecatrienoic acid was rapidly further oxidized to a triene, 9S,16S-dihydroperoxy-10E,12Z,14E-octadecatrienoic acid. In conclusion, we have expressed, purified and characterized a new MnLOX from M. oryzae. The pathogen likely secretes Mo-MnLOX and phospholipases to generate oxylipins and to oxidize lipid membranes of rice cells and the cuticle. << Less
Arch. Biochem. Biophys. 583:87-95(2015) [PubMed] [EuropePMC]
This publication is cited by 8 other entries.
-
Expression of manganese lipoxygenase in Pichia pastoris and site-directed mutagenesis of putative metal ligands.
Cristea M., Engstroem K., Su C., Hoernsten L., Oliw E.H.
Manganese lipoxygenase is secreted by the fungus Gaeumannomyces graminis. We expressed the enzyme in Pichia pastoris, which secreted approximately 30 mg Mn-lipoxygenase/L culture medium in fermentor. The recombinant lipoxygenase was N- and O-glycosylated (80-100 kDa), contained approximately 1 mol ... >> More
Manganese lipoxygenase is secreted by the fungus Gaeumannomyces graminis. We expressed the enzyme in Pichia pastoris, which secreted approximately 30 mg Mn-lipoxygenase/L culture medium in fermentor. The recombinant lipoxygenase was N- and O-glycosylated (80-100 kDa), contained approximately 1 mol Mn/mol protein, and had similar kinetic properties (K(m) approximately 7.1 microM alpha-linolenic acid and V(max) 18 nmol/min/microg) as the native Mn-lipoxygenase. Mn-lipoxygenase could be quantitatively converted, presumably by secreted Pichia proteases, to a smaller protein (approximately 67 kDa) with retention of lipoxygenase activity (K(m) approximately 6.4 microM alpha-linolenic acid and V(max) approximately 12 nmol/min/microg). Putative manganese ligands were investigated by site-directed mutagenesis. The iron ligands of soybean lipoxygenase-1 are two His residues in the sequence HWLNTH, one His residue and a distant Asn residue in the sequence HAAVNFGQ, and the C-terminal Ile residue. The homologous sequences of Mn-lipoxygenase are H274VLFH278 and H462HVMN466QGS, respectively, and the C-terminal amino acid is Val-602. The His274Gln, His278Glu, His462Glu, and the Val-602 deletion mutants of Mn-lipoxygenase were inactive, and had lost >95% of the manganese content. His-463, Asn-466, and Gln-467 did not appear to be critical for Mn-lipoxygenase activity, as His463Gln, Asn466Gln, Asn466Leu, and Gln467Asn mutants metabolized alpha-linolenic acid to 11- and 13-hydroperoxylinolenic acids. We conclude that His-274, His-278, His-462, and Val-602 likely coordinate manganese. << Less
Arch. Biochem. Biophys. 434:201-211(2005) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Manganese lipoxygenase. Purification and characterization.
Su C., Oliw E.H.
A linoleic acid (13R)-lipoxygenase was purified to homogeneity from the culture medium of Gäumannomyces graminis, the take-all fungus, by hydrophobic interaction, cation exchange, lectin affinity, and size-exclusion chromatography. The purified dioxygenase lacked light absorption between 300 and 7 ... >> More
A linoleic acid (13R)-lipoxygenase was purified to homogeneity from the culture medium of Gäumannomyces graminis, the take-all fungus, by hydrophobic interaction, cation exchange, lectin affinity, and size-exclusion chromatography. The purified dioxygenase lacked light absorption between 300 and 700 nm. Gel filtration indicated an apparent molecular mass of approximately 135 kDa in 6 M urea and approximately 160 kDa in buffer. SDS-polyacrylamide gel electrophoresis (PAGE) showed that the enzyme was heterogeneous in size and consisted of diffuse protein bands of 100-140 kDa. Treatment with glycosidases for N- and O-linked oligosaccharides yielded a distinct protein of approximately 73 kDa on SDS-PAGE. Atomic emission spectroscopy indicated 0.5-1.0 manganese atom/enzyme molecule. The isoelectric point was approximately 9.7, and the enzyme was active between pH 5 and 11 with optimum activity at pH 7. 0. For molecular oxygen, Km was 30 microM and Vmax 10 micromol mg-1min-1; for linoleic acid, Km was 4.4 micromol, Vmax 8.2 micromol mg-1min-1, and the turnover number 1100 min-1. The enzyme oxidized linolenic acid twice as fast as linoleic acid. The main products were identified by mass spectrometry as 13-hydroperoxy-(9Z,11E, 15Z)-octadecatrienoic and 13-hydroperoxy-(9Z,11E)-octadecadienoic acids, respectively. After reduction of the hydroperoxide, steric analysis of methyl 13-hydroxyoctadecadienoate by chiral high performance liquid chromatography yielded one enantiomer (>95%), which co-eluted with the R-stereoisomer of methyl (13R, 13S)-hydroxyoctadecadienoate. Arachidonic and dihomogammalinolenic acids were not substrates, while oxygen consumption, UV analysis, and mass spectrometric analysis indicated that gamma-linolenic acid was oxygenated both at C-11 and C-13. The enzyme was active at 60 degreesC and after treatment with 6 M urea. It was strongly inhibited by 10-50 microM concentrations of eicosatetraynoic acid and a lipoxygenase inhibitor (N-(3-phenoxycinnamyl)acetohydroxamic acid), but many other lipoxygenase inhibitors (100 microM) were without effect. We conclude that, after deglycosylation, the enzyme has the same size on SDS-PAGE as mammalian and marine lipoxygenases, but it differs from all previously described lipoxygenases in three ways. It is secreted, it forms (13R)-hydroperoxy-(9Z, 11E)-octadecadienoic acid, and it contains manganese. << Less
J. Biol. Chem. 273:13072-13079(1998) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Manganese lipoxygenase. Discovery of a bis-allylic hydroperoxide as product and intermediate in a lipoxygenase reaction.
Hamberg M., Su C., Oliw E.
Linoleic acid was incubated with manganese lipoxygenase (Mn-LO) from the fungus Gäumannomyces graminis. The product consisted of (13R)-hydroperoxy-(9Z,11E)-octadecadienoic acid ((13R)-HPOD) and a new hydroperoxide, (11S)-hydroperoxy-(9Z,12Z)-octadecadienoic acid ((11S)-HPOD). Incubation of (11R)-[ ... >> More
Linoleic acid was incubated with manganese lipoxygenase (Mn-LO) from the fungus Gäumannomyces graminis. The product consisted of (13R)-hydroperoxy-(9Z,11E)-octadecadienoic acid ((13R)-HPOD) and a new hydroperoxide, (11S)-hydroperoxy-(9Z,12Z)-octadecadienoic acid ((11S)-HPOD). Incubation of (11R)-[2H]- and (11S)-[2H]linoleic acids with Mn-LO led to the formation of hydroperoxides that largely retained and lost, respectively, the deuterium label. Conversion of the (11S)-deuteriolinoleic acid was accompanied by a primary isotope effect, which manifested itself in a strongly reduced rate of formation of hydroperoxides and in a time-dependent accumulation of deuterium in the unconverted substrate. These experiments indicated that the initial step catalyzed by Mn-LO consisted of abstraction of the pro-S hydrogen of linoleic acid to produce a linoleoyl radical. (11S)-HPOD was converted into (13R)-HPOD upon incubation with Mn-LO. The mechanism of this enzyme-catalyzed hydroperoxide rearrangement was studied in experiments carried out with 18O2 gas or 18O2-labeled hydroperoxides. Incubation of [11-18O2](11S)-HPOD with Mn-LO led to the formation of (13R)-HPOD, which retained 39-44% of the 18O label, whereas (11S)-HPOD incubated with Mn-LO under 18O2 produced (13R)-HPOD, which had incorporated 57% of 18O. Furthermore, analysis of the isotope content of (11S)-HPOD remaining unconverted in such incubations demonstrated that [11-18O2](11S)-HPOD suffered a time-dependent loss of 18O when exposed to Mn-LO, whereas (11S)-HPOD incorporated 18O when incubated with Mn-LO under 18O2. On the basis of these experiments, it was proposed that the conversion of (11S)-HPOD into (13R)-HPOD occurred in a non-concerted way by deoxygenation into a linoleoyl radical. Subsequent reoxygenation of this intermediate by dioxygen attack at C-13 produced (13R)-HPOD, whereas attack at C-11 regenerated (11S)-HPOD. The hydroperoxide rearrangement occurred by oxygen rebound, although, as demonstrated by the 18O experiments, the oxygen molecule released from (11S)-HPOD exchanged with surrounding molecular oxygen prior to its reincorporation. << Less
J Biol Chem 273:13080-13088(1998) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.